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Abstract

We analyze in…nitely repeated prisoners’ dilemma games with imper-
fect private monitoring, and construct sequential equilibria where strate-
gies are measurable with respect to players’ beliefs regarding their oppo-
nents’ continuation strategies. We show that, when monitoring is almost
perfect, the symmetric e¢cient outcome can be approximated in any pris-
oners’ dilemma game, while every individually rational feasible payo¤ can
be approximated in a class of prisoner dilemma games. We also extend the
approximate e¢ciency result to n-player prisoners’ dilemma games and to
prisoner’s dilemma games with more general information structure. Our
results require that monitoring be su¢ciently accurate but do not require
very low discounting.

1 Introduction
We analyze a class of in…nitely repeated prisoners’ dilemma games with imper-
fect private monitoring and discounting. The main contribution of this paper
is to construct “belief-based” strategies, where a player’s continuation strategy
is a function only of her beliefs about her opponent’s continuatioin strategy.
This simpli…es the analysis considerably — in the two-player case, we explic-
itly construct sequential equilibria, enabling us to invoke the one-step deviation
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principle of dynamic programming. By doing so, we prove that one can approx-
imate the symmetric e¢cient payo¤ in any prisoners’ dilemma game provided
that the monitoring is su¢ciently accurate. Furthermore, for a class of pris-
oners’ dilemma games, one can approximate every individually rational feasible
payo¤. Our e¢ciency results also generalize to the n player case, where we show
that the symmetric e¢cient payo¤ can similarly be approximated.

These results are closely related to an important paper by Sekiguchi [13],
who shows that one can approximate the e¢cient payo¤ in two-player prisoners’
dilemma games provided that the monitoring is su¢ciently accurate. Sekiguchi’s
result applies for a class of prisoners’ dilemma payo¤s, and relied on the con-
struction of a Nash equilibrium which achieves approximate e¢ciency. The
results in this paper can be viewed as an extension and generalization of the
approach taken in Sekiguchi’s paper.

Our substantive results are also related to those obtained in recent papers by
Piccione [12] and Ely and Välimäki [5], which adopt a very di¤erent approach.
The current paper (and Sekiguchi’s) utilizes initial randomization to ensure
that a player’s beliefs adjust so that she has the incentive to punish or reward
her opponent(s) as is appropriate. The Piccione-Ely-Välimäki approach on the
other hand relies on making each player indi¤erent between her di¤erent actions
at most information sets, so that her beliefs do not matter1 . We defer a more
detailed discussion of the two approaches to the concluding section of this paper.

The rest of this paper is as follows. Section 2 constructs sequential equilibria
which approximate the e¢cient outcome in the two-player case, while section
3 approximates the set of individually rational feasible payo¤s in this case.
Section 4 shows that the e¢ciency result can be generalized to n player prisoners’
dilemma games. The …nal section concludes.

2 Approximating the E¢cient Payo¤
C D

C 1 ¡l
D 1 + g 0

We consider the prisoners’ dilemma with the stage game payo¤s given above,
where the row indicates the player’s own action and the column indicates her
opponent’s action. Players only observe their own actions, and also observe a
private signal which is informative about their opponent’s action. This signal
belongs to the set ­ = fc; dg; where c (resp. d) is more likely when the opponent
plays C (resp. D). The signalling structure is assumed symmetric, in the sense
that the probability of errors does not depend on the action pro…le played. Given
any action pro…le a = (a1; a2); ai 2 A = fC;Dg; the probability that exactly
one player receives a wrong signal is " > 0, and the probability that both receive

1 Obara [11] found the same kind of strategy independently, but used it for repeated games
with imperfect public monitoring to construct a sequential equilibrium which pareto-dominates
perfect public equilibria in simple repeated partnership games.
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wrong signals is » > 0: Players maximize the expected sum of stage game payo¤s
discounted at rate ±: We also assume that at the end of each period, players
observe the realization of a public randomization device uniformly distributed
on the unit interval.

Our approach is closely related to Sekiguchi’s [13]: we show that one can
construct a mixed trigger strategy sequential equilibrium which achieves partial
cooperation. With public randomization or by “dividing up the game” as in
Ellison [4], one can modify the strategy appropriately in order to approximate
full cooperation. Our approach involves the construction of a “belief-based”
strategy, i.e. a strategy which is a function of the player’s beliefs about his
opponent’s continuation strategy. This results in a major simpli…cation as com-
pared to the more conventional notion of a strategy which is a function of the
private information of the player.

We begin by de…ning partial continuation strategies. In any period t; de…ne
the partial continuation strategy ¾D as follows: play D at period t; and at period
t + 1 play ¾D if the realized outcomes in period t are (Dc) or (Dd): De…ne the
partial continuation strategy ¾C as follows: in any period t play C; at period
t + 1 play ¾C if the realized outcomes in period t is (Cc); and play ¾D if the
realized outcome at t is (Cd): We call ¾C and ¾D a partial continuation strategy
since each of these fully speci…es the player’s actions in every subsequent period
at every information set that arises given that he con…rms to the strategy: In
consequence, the (random) path and payo¤s induced by any pair of partial
continuation strategies is well de…ned. However, a partial continuation strategy
does not specify the player’s actions in the event that she deviates from the
strategy at some information set. This is deliberate, since our purpose is to
construct the full strategies that constitute a sequential equilibrium. Note also
that for any player i; only the partial continuation strategy of player j is relevant
when computing i’s payo¤s in any equilibrium.

Let Vab(±; "; »); a; b 2 fC;Dg denote the repeated game payo¤ of ¾a against
¾b — these payo¤s are well de…ned since the path induced by each pair is well
de…ned. We have that VDD > VCD; for all parameter values. Furthermore, if
± > g

1+g ; and ("+ ») is su¢ciently small, then VCC > VDC : Suppose that player
i believes that her opponent is playing either ¾C or ¾D; and is playing ¾C with
probability ¹: Then the di¤erence between the payo¤ from playing ¾C and the
payo¤ from playing ¾D is given by

¢V (¹; ±; "; ») = ¹(VCC ¡ VDC) ¡ (1 ¡ ¹)(VDD ¡ VCD) (1)

Hence ¢V (¹) is increasing and linear in ¹ and there is a unique value,
¼(±; "; »); at which it is zero. Suppose now that at t = 1 both players are
restricted to choosing between ¾C and ¾D : There is a mixed equilibrium of the
restricted game, where each player plays the strategy ¾ which plays ¾D with
probability 1 ¡ ¼ and ¾C with probability ¼: Call this partial mixed strategy
¾: Note that ¼(±; "; ») increases to 1 as we decrease ± towards its lower bound

g
1+g : Let ± be such that ¼ > 1

2 :

3



For future reference we emphasize that equation (1) applies to any period
— if a player believes that her opponent’s continuation strategy is ¾C with
probability ¹ and ¾D with probability 1¡¹; then she prefers ¾C to ¾D if ¹ > ¼
and prefers ¾D to ¾C if ¹ < ¼: Note also that if a player’s opponent begins at
t = 1 with a strategy in f¾C ; ¾Dg; her continuation strategy also belongs to this
set, since ¾D induces only ¾D; while ¾C may induce either ¾C or ¾D; depending
upon the private history that the opponent has observed.

We de…ne the following four belief revision operators. Starting with any
initial belief ¹; we can de…ne a player’s new beliefs when she takes action a
and receives signal !: Her new belief (i.e. the probability that j’s continuation
strategy is ¾C) will be given by Âa!(¹): We have four belief operators, ÂCc;
ÂCd; ÂDc; ÂDd; where each Âa! : [0; 1] ! [0; 1] is de…ned, using Bayes rule, as
follows

ÂCc(¹) =
¹(1 ¡ 2" ¡ »)

¹(1 ¡ " ¡ ») + (" + »)(1 ¡ ¹)
(2)

ÂCd(¹) =
¹"

¹(" + ») + (1 ¡ " ¡ »)(1 ¡ ¹)
(3)

ÂDc(¹) =
¹"

¹(1 ¡ " ¡ ») + (" + »)(1 ¡ ¹)
(4)

ÂDd(¹) =
¹»

¹(" + ») + (1 ¡ " ¡ »)(1 ¡ ¹)
(5)

Starting with any initial belief ¹̂ at the beginning of the game, a player’s
belief at any private history, i.e. after an arbitrary sequence h(a!)rit

r=1 ; can be
computed by iterated application of the appropriate belief operators. Let ¥(¹̂)
be the set of possible beliefs, i.e. ¹ 2 ¥(¹̂) , 9 < ¹r >t

r=1: ¹1 = ¹̂, ¹t = ¹
and ¹r+1 = Â(a!)r

(¹r); (a!)r 2 A £ ­; 1 · r · t ¡ 1: Let ¿ be a (full) strategy,
which is de…ned at every information set, i.e. after arbitrary private histories.
Clearly, ¿ is a best response to ¾ after every private history if and only if it is
optimal to play ¿ at every belief ¹ 2 ¥(p); i.e. at all possible beliefs given the
initial belief p:

We now examine the properties of these belief operators. First, each is a
strictly increasing function: The operator ÂCc has an interior …xed point at µ;
and ÂCc(¹) 7 ¹ as ¹ ? µ. The value of µ depends upon ("; ») in the following
way

µ("; ») =
1 ¡ 3" ¡ 2»
1 ¡ 2" ¡ 2»

(6)

We shall assume that maxf"; »g < 1
6 ; which in turn entails that µ > 1

2 :
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We now show Âa!(¹) < ¹ for each of the other three belief operators,
ÂCd; ÂDc and ÂDd, provided that maxf"; »g < 1

6 : To verify this, take any typical
expression from (3)-(5), and divide by ¹: This yields " (or ») in the numerator,
while the denominator is strictly larger since it is a convex combination of ("+»)
and (1 ¡ " ¡ »):

Since ¹ < µ ) Âa!(¹) < µ for any belief operator, this immediately implies
that if ¼ < µ; ¥(¼) µ [0; µ): This follows from the fact that the initial belief p
is strictly less than µ; and since we have demonstrated that no point ¹0 > µ is
the image of any ¹ · µ under any belief operator.

Hence, provided that initial beliefs are given by ¼ < µ; it su¢ces to de…ne
our belief based strategy for beliefs in the set [0; µ]: Let ½ : [0; µ] ! fC;D; ¼g
be de…ned as follows: ½(¹) = C if ¹ 2 (¼; µ] and ½(¹) = D if ¹ 2 [0; ¼): If
¹ = ¼; ½(¹) = ¼; i.e. ½ plays C with probability ¼ and D with probability 1¡¼:
Hence the pair (½; ¼), i.e. ½ in conjunction with an initial belief ¼ · µ, speci…es
an action at every possible belief, and hence a complete strategy.

The advantage of this speci…cation is that a player’s continuation strategy
is speci…ed even at information sets which arise due to a player’s deviating from
½ in the past. The belief based strategy (¼; ½) is realization equivalent to the
partial strategy ¾ if it induces the same probability distribution over actions at
every private history. This reduces to the following condition:

De…nition 1 (¼; ½) is realization equivalent to ¾ if ¹ 2 [¼; µ] ) [ÂCc(¹) > ¼
and ÂCd(¹) < ¼] and ¹ 2 [0; ¼] ) [ÂDc(¹) < ¼ and ÂDd(¹) < ¼].

Lemma 2 If 1
2 < ¼ < µ("; »); (½; ¼) is realization equivalent to ¾.

Proof. To verify that ¹ 2 [¼; µ] ) ÂCc(¹) > ¼, recall that ÂCc(¹) > ¹ if
¹ < µ; so that Âk

Cc(¼) > ¼ for any k: To verify ¹ 2 [¼; µ] ) ÂCd(¹) < ¼, it
su¢ces to verify that ÂCd(µ) · ¼, since ÂCd is strictly increasing:

ÂCd(µ) =
"(1 ¡ 3" ¡ 2»)

(" + »)(1 ¡ 3" ¡ 2») + (1 ¡ " ¡ »)"
<

"
2"

=
1
2

< ¼ (7)

¹ · ¼ ) ÂDc(¹) < ¼ and ¹ · ¼ ) ÂDd(¹) < ¼ follow from the fact already
established that ÂDc and ÂDd lie below the 450 line.

Note that if " and » are su¢ciently small, we can select ± > g
1+g so that

¼(±; "; ») 2 (1
2 ; µ) — this follows from the fact that ¼(±; "; ») ! 1 as ± ! g

1+g
and (" + ») ! 0; while ¼(±; "; ») ! 0 if ± ! 1 and (" + ») ! 0: Henceforth we
shall assume that ± is such that ¼ 2 (1

2 ; µ) so that (½; ¼) is consistent.
We have therefore established that the pair (½; ¼) de…nes a full strategy

which is behaviorally equivalent to ¾:

Proposition 3 If 1
2 < ¼ < µ("; »); the strategy pro…le where each player plays

(½; ¼) is a sequential equilibrium.
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Proof. Note …rst that if ¹ = ¼; a player is indi¤erent between playing ¾C
and ¾D; and hence a one-step deviation from playing ½ is not pro…table. Since
the payo¤s from playing ¾; ¾C and ¾D are equal at belief ¼; one may also, for the
purposes of computing payo¤s, use ¾C or ¾D as is computationally convenient
in the event of belief ¼:

Consider …rst the case when ¹ > ¼: A one-step deviation from ½ is to play
D; and to continue with ½ in the next period. The following sub-cases arise:

a) Suppose that ÂDc(¹) · ¼ and ÂDd(¹) · ¼: In this case, a one-step
deviation from ½ is to play ¾D; whereas ½(¹) = ¾C : However, (1) establishes
that in this case ¾C is preferable to ¾D; and hence a one-step deviation from ½
is unpro…table.

b) Suppose that ÂDc(¹) · ¼ and ÂDd(¹) > ¼, so that the one-step deviation
is to play D today and continue with ¾D if Dc is reached, and to continue with
¾C if Dd is reached. Let ¢~V (¹) be payo¤ di¤erence between the equilibrium
strategy and the one-step deviation. Note that the one step deviation di¤ers
from ¾D only at the information set Dd; at this information it continues by
playing ¾C whereas ¾D continues with ¾D: Hence we can write ¢~V (¹) as the
payo¤ di¤erence between ¾C and ¾D minus the payo¤ di¤erence between ¾C
and ¾D conditional on Dd being reached, as follows:

¢~V (¹) = ¢V (¹) ¡ ±[¹(" + ») + (1 ¡ ¹)(1 ¡ " ¡ »)][¢V (ÂDd(¹))] (8)

Note that ÂDd(¹) < ¹: Equation (1) shows that this implies that ¢V (¹) >
¢V (ÂDd(¹)): Since the coe¢cient multiplying ¢V (ÂDd(¹)) is strictly less than
one, this implies that ¢~V (¹) > 0: Hence if ¹ > ¼; a one-step deviation is
unpro…table.

c) Finally, we establish that ÂDc(¹) < ¼ 8 ¹ · µ; so that no other sub-case
need be considered. Evaluating ÂDc at the upper bound µ; we have

ÂDc(µ) =
"(1 ¡ 3" ¡ 2»)

(1 ¡ " ¡ »)(1 ¡ 3" ¡ 2») + (" + »)"
<

"
1 ¡ " ¡ »

<
1
2

(9)

where the last step follows from the assumption that maxf"; »g < 1
6 :

Consider now the case when ¹ < ¼: In this case, a one-step deviation from ½ is
to play C today, and to continue with ¾C if ÂCc(¹) ¸ ¼; but to continue with ¾D
if ÂCc(¹) < ¼: (Note that ¹ < ¼ ) ÂCd(¹) < ¼; so the continuation strategies
do not di¤er in this event.) In the …rst sub-case, the one-step deviation from ½
corresponds to playing ¾C , and (1) establishes that in this case ¾D is preferable
to ¾C ; and hence a one-step deviation from ½ is unpro…table. In the second
sub-case, the one-step deviation di¤ers from ¾C only at the information set Cc
— it plays ¾D at this information set rather than ¾C : Let ¢V̂ (¹) denote the
payo¤ di¤erence between the one-step deviation and the equilibrium strategy
¾D: We have

¢V̂ (¹) = ¢V (¹) ¡ ±[¹(1 ¡ " ¡ ») + (1 ¡ ¹)(" + »)][¢V (ÂCc(¹))] (10)
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Since ¼ > ÂCc(¹) > ¹;¢V (¹) < ¢V (ÂCc(¹)) < 0: Also, the coe¢cient
multiplying ¢V (ÂCc(¹)) is less than 1 which establishes that ¢V̂ (¹) > 0:

We have therefore established that if a player’s opponent j plays the strategy
¾ (which randomizes between ¾C and ¾D); it is optimal for player i to play ½;
with initial belief ¼: However, (½; ¼) is consistent and behaviorally equivalent to
the strategy ¾: Hence the pro…le where both players play (½; ¼) is a sequential
equilibrium.

Under what conditions is there a pure strategy sequential equilibrium where
both players begin in period one by playing ¾C with probability one. The
above analysis also permits an answer to this question, with the di¤erence that
the initial belief ¹̂ = 1 rather than ¼: To ensure that it is always optimal to
cooperate after receiving good signals, we require that Âk

Cc(1) > ¼ 8k, which
will be satis…ed as long as ¼ · µ: Additionally, it must be optimal to switch to
playing D on receiving a bad signal, i.e. we must have ÂCd(¹) < ¼ for ¹ = 1 or
¹ = Âk

Cc(1) for some k: Hence it is necessary and su¢cient that2

ÂCd(1) =
"

" + »
· ¼ < µ (11)

This requires that the ÂCd function always lies below µ; which requires the
inequality

"2 < »(1 ¡ 3" ¡ 2») (12)

This inequality will be satis…ed if " is su¢ciently small relative to »; i.e. if
signals are su¢ciently “positively” correlated. It is easily veri…ed that this in-
equality cannot be satis…ed if signals are independent or “negatively” correlated
so that the equilibrium must be in mixed strategies.

Note that ¼ plays a dual role in the construction of the mixed strategy equi-
librium. On the one hand it is the randomization probability in the …rst period,
and on the other hand, it is simply a number which de…nes the threshold at
which behavior changes. These roles are obviously distinct, as is apparent from
our discussion of the pure strategy equilibrium. This distinction is particularly
relevant when we discuss the folk theorem in the following section.

With the construction of the mixed equilibrium, one can approximate full
cooperation by using one of two devices. If a public randomization device is
available, then it is immediate that the equilibrium payo¤ set is monotonically
increasing (in the sense of set inclusion) in ± — given any ±0 > ±; players may
simply re-start the game with probability m = ±

±0 : In the absence of such public
randomization, one may use the construction introduced by Ellison [4] (see also,
Sekiguchi [13]), of dividing the game into n separate repeated games, thereby
reducing the discount factor.

2 The conditions for the optimality of playing D once a player has played D are as before,
and hence will also be satis…ed.
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Lemma 4 Let ±0 < ±1 < 1; and let there be a symmetric strategy pro…le which
is a sequential equilibrium of the repeated game for any ± 2 ( ±0; ±1); yielding
payo¤ v(±) ¸ v for any ± 2 ( ±0; ±1): There exists ±̂ < 1 such that the repeated
game has a symmetric sequential equilibrium with payo¤ greater than v for any
± ¸ ±̂ . If a public randomization device is available and (v1; v2) is a sequential
equilibrium payo¤ for some ± 2 (0; 1); it is also an equilibrium payo¤ for any
±0 > ±:

Proof. For the proof of the …rst part of this lemma, see Ellison [4]. To prove
the second part, let ¿ be the strategy pro…le giving the required payo¤ given ±:
Given ±0; let m = ±

±0 . Players play a sequence of games: they begin with the
strategy pro…le ¿: If the sunspot in any period Á > m; they play a new game
and re-start with ¿ :

Proposition 5 For any x < 1; there exists a symmetric sequential equilibrium
with payo¤ greater than x if " and » are su¢ciently small, provided that either
( i) ± is su¢ciently close to 1 or (ii) ± > g

1+g and a public randomization device
is available.

Proof. Proposition 3 implies that if ("; ») are su¢ciently small, so that
µ("; ») is close to 1; we have an open interval of values of ¼ such that (¼; ½) is a
sequential equilibrium. In this range, ¼(±; "; ») is a strictly decreasing function
of ±; and hence if ("; ») are su¢ciently small, there is an open interval of values
of ± such that (¼(±; "; »); ½) is a sequential equilibrium. Since ("; ») are close to
zero, we can select this interval of values of ¼ close to 1; so that the payo¤ in
any such equilibrium is greater than x: Part (i) of the proposition then follows
from the …rst part of lemma 4. If a public randomization device is available, let
("; ») ! (0; 0) and ±("; ») ! g

(1+g) ; so that ¼ ! 1: The equilibrium payo¤ tends
to one. Lemma 4 ensures that this result holds for all ± > g

1+g :

Although it is common to allow for vanishing discounting in proving folk
theorems in repeated games, it is worth pointing out that in order to obtain
approximate e¢ciency, such vanishing discounting is not required if we have a
public randomization device. In the absence of such a randomization device,
one does require vanishing discounting, essentially due to an “integer” problem.

2.1 Generalizing the information structure.
We now show that the above construction also extends for a more general in-
formation structure. Let ­ be a common …nite set of signals observed by the
players, and assume that the marginal distribution of p has full support, i.e. for
any action pro…le a; P (!i = !0

ija) =
P

!j
p(!0

i; !j ja) > 0 for all !i 2 ­; i = 1; 2:
Our assumptions on the signal structure are as follows:

1. Assume that the set ­ can be partitioned into the set of good signals ­c
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and the set of bad signals ­d; where the likelihood ratios satisfy

P (!1 = cj (a1;D))
P (!1 = cj (a1; C))

< 1 <
P (!1 = dj (a1;D))
P (!1 = dj (a1; C))

(13)

for every c 2 ­c; d 2 ­d and for any action a1 2 fC;Dg taken by player 1:
Although we focus on player 1, the same conditions and results also hold for
player 2.

2. Assume that ­C £ ­C is 1 ¡ " evident given the action pro…le (CC) ;
where " is a small number. This ensures that if player 1 receives any good
signal, and her prior belief assigns high probability to the action pro…le (CC);
then player 1 assigns high probability to the event that her opponent has also
received a good signal. Note that this assumption is consistent with signals
being independent conditional upon the action pro…le — under independence,
if P (!2 2 ­cjCC) > 1 ¡ "; then ­C £ ­C is 1 ¡ " evident given (CC):3

3. Let min
d

P (!1 = dj (CD)) and
min

c
P (!1=c;!22­Dj(CC))

min
d

P (!1=d;!22­C j(CC)) be bounded below

by some number ´ > 0; independent of ":Assume also that
max

c
P (!2 2 ­cj (DC) ; !1 = c) · 1 ¡ ´0 where ´0 > 0; again independent of

":

Note that assumptions 1-3 above are consistent with the signals being inde-
pendent conditional upon the strategy pro…le. Also note that this information
structure can be quite di¤erent from almost perfect monitoring.

We now show that under these assumptions, beliefs evolve in such a way
that they are always above the initial belief ¼ as long as a player plays C and
receives good signals in ­c; but they fall below ¼ whenever a player receives a
bad signal and they continue to stay below ¼ when a player plays D:

When player 1 plays C and receives some signal c 2 ­c; the updated belief
is given by

ÂCc(¹) =
¹P (!1 = c; !2 2 ­C j (CC))

¹P (!1 = cj (CC)) + (1 ¡ ¹)P (!1 = cj (CD))
(14)

The …xed point of this mapping will be close to 1 for every c 2 ­C if
P (!1=c;!22­C j(CC))

P (!1=cj(CC)) = P (!2 2 ­C j (CC) ; !1 = c) is large enough for any c 2
­C : This is greater than 1 ¡ " since ­c £ ­c is 1 ¡ " evident.

The second condition is that a player should switch to playing ¾D when he
receives a bad signal. For each c 2 ­c; we can de…ne the associated …xed point
of the mapping (14), just as in (6). Let ¹µ denote the largest such …xed point (in
the set ­c) and let µ denote the smallest such …xed point. A su¢cient condition
for our construction is that ÂCd(µ) < µ for any d 2 ­d: In this case one can

3 Mailath and Morris [8] introduce and use such conditions on the signal structure. Given
their focus on almost public monitoring (where signals are correlated), they also assume a
similar condition for ­d £­d:
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select ¼ 2 ( ÂCd(µ); µ) so that switching to ¾D is optimal: Since µ ! 1 as " ! 0;
and µ 5 max

c2­c

P (!1=c;!22­C j(CC))
P (!1=cj(CC)) ; we need that ÂC;d(max

c2­c

P (!1=c;!22­C j(CC))
P (!1=cj(CC)) )

is bounded away from 1 independent of ": A straightforward application of the
belief operators shows that:

ÂC;d(¹µ) 5 1
1 + ´2 (15)

for all d 2 ­D; which is bounded away from 1 by assumption 2 above.
Finally, we need to ensure that ÂD!1

(¹) remains low, so that a player con-
tinues with playing ¾D: If !1 2 ­D; it is easy to verify that ÂD!1

(¹) < ¹. If
!1 2 ­c; then p (!2 2 ­C j (DC) ; !1 = c) is less than 1 ¡ ´0; and bounded away
from 1 for any ­c by assumption 3: Hence it is optimal to continue with ¾D
once a player starts playing D:

Summarizing the above arguments and checking sequential rationality, we
have the following theorem:

Proposition 6 Given ´; ´0 > 0; there exists " > 0 such that for any " < ";
our mixed trigger strategy (½ (!) = C if ! 2 ­C and ½ (!) = D if ! 2 ­D::::)
is a sequential equilibrium. If " ! 0 we can approximate the e¢ciency outcome
provided that either i) ± ! 1 or ii) ± > g

1+g and a public randomization device
is available.

3 Approximating Any Individually Rational Fea-
sible Payo¤

We now build on the construction of the previous section and show how to
approximate any individually rational feasible payo¤. We shall consider a pris-
oners’ dilemma game where the symmetric e¢cient payo¤ is given by the pro…le
(C;C) (rather than by a convex combination of (C;D) and (D;C)); and we also
assume that there are only two signals, c and d: We also assume in this section
that a public randomization device is available. The key step is to approximate
the payo¤ (1+g+l

1+l ; 0), which is player 1’s maximal payo¤ within the set of indi-
vidually rational and feasible payo¤s. Since the payo¤ (1; 1) has already been
approximated in the previous section, and (0; 0) is a stage game equilibrium
payo¤, one can then use public randomization to approximate any individually
rational feasible payo¤.

It might be useful to outline the basic construction and to explain the com-
plications that arise. The basic idea in approximating the extremal asymmetric
payo¤ is that play begins in the asymmetric phase where player 1 plays D and
player 2 randomizes, playing C with a high probability, À. This asymmetric
phase continues or ends, depending upon the realization of a public random-
ization device. Thus player 1’s per-period payo¤ in the asymmetric phase is
approximately 1 + g while player 2’s per-period payo¤ is approximately ¡l:
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Since the latter is less than the individually rational payo¤ for player 2, he must
be rewarded for playing C: To ensure this, when the asymmetric phase ends,
both player’s continuation strategies depend upon their private information.
Player 1 continues with ¾C if he has observed the signal c in the last period
(i.e. if his information is Dc)and continues with ¾D if she has observed d (i.e.
if his information is Dd): This ensures that player 2 is rewarded for playing C
in the asymmetric phase. Similarly, player 2 continues with ¾C if his private
information is Cd; the information set which is most likely when he plays C;and
continues with ¾D if his private information is Dd: Hence, if the noise is small,
player 2’s continuation payo¤ when the asymmetric phase ends is approximately
1 if he has played C in the previous period and approximately zero if he has
played D: Hence if ± is large relative to l (± > l

1+l ); we can, by choosing the
value of the sunspot appropriately, make player 2 indi¤erent between C and D
in the asymmetric phase. The payo¤s in this equilibrium converge to (1+g+l

1+l ; 0)
as the noise vanishes.

However, one must also verify that the players …nd it optimal to play ¾C
and ¾D, as appropriate, at each information set after the end of the asymmetric
phase. A complication arises here, as compared to the previous section, since
player 1 does not randomize in the asymmetric phase, i.e. she plays D for sure.
(Indeed, she cannot play C with positive probability, since in that case her payo¤
in the asymmetric phase is bounded above by 1 and hence cannot approximate
1 + g):4 Hence when player 2 receives the signal c; he knows that there has
been at least one error in signals, and his beliefs about player 1’s continuation
strategy depend upon the relative probability of one (") versus two errors (»).
In other words, his continuation strategy at the information sets Cc and Dc
depends upon the correlation structure of signals. Since player 2’s continuation
strategy depends upon this correlation structure, this implies that player 1’s
beliefs also depend upon the correlation structure.

We adopt two alternative approaches to handle this problem. First, we show
that if signals are positively correlated, so that the probability of two errors is
at least as large as the probability of one error, then one can approximate the
asymmetric payo¤, without any restriction upon payo¤s. Second, we show that
one does not need such positive correlation of signals provided that one can
choose ± so that ¼(±; "; ») su¢ciently close to one. This result applies to any
prisoners’ dilemma game where g ¸ l — in any such game one can approximate
the asymmetric payo¤ arbitrarily closely. However, this second approach does
not work if l > g, since in this case one cannot have ¼(±; "; ») ! 1: The reason
for this is the for ¼ to be close to 1, we must have ± ! g

1+g : However, in
the asymmetric phase, player 2 incurs a loss of l by playing C; whereas his
continuation payo¤ gain is no more than 1: Hence player 2 will be willing to
play C in the asymmetric phase only if ± > l

1+l : Hence if l > g, one cannot have

4 This argument is more general and implies that one cannot have a folk theorem in com-
pletely mixed strategies for stage games with non-degenerate payo¤s. Let v̂1 be the supre-
mum payo¤ of player 1 in any equilibrium where player 1 randomizes in every period at
every information set. Since v̂1 · (1 ¡ ±)mina1fmaxa2 u1(a1; a2)g + ±v̂1; this implies v̂1 ·
mina1fmaxa2 u1(a1; a2)g:

11



¼ close to 1 since ± is bounded away from g
1+g :

We make the following assumption for this section:

Assumption A: Either A1: » ¸ " or A2: g ¸ l and »(1¡»)(1¡3"¡2») > "3:

Note that A1 is a relatively strong assumption that signals are positively
correlated, but does not require any assumption on payo¤s. On the other hand,
A2 requires an assumption on payo¤s but is a mild assumption about the relative
probability of errors. It is always satis…ed if signals are positively correlated,
or independent. In the independent signal case, the left hand side is a term of
order " whereas the right hand side is a term of order "3: Hence A2 is satis…ed
even if signals are negatively correlated provided that they are not too highly
so.

We now de…ne the players’ strategies more precisely. In any period t¡1 in the
asymmetric phase, player 1 plays D for sure, while player 2 randomizes between
C and D; choosing C with a constant probability À which is close to 1. At the end
of period, players observe the realization, Át¡1, of a sunspot which is uniformly
distributed on [0; 1]: If Át¡1 > 1 ¡ ¸; both players continue in the asymmetric
phase for the next period. If Át¡1 · ¸; the asymmetric phase ends for both
players, and is never reached again. In this case, players’ continuation strategies
(i.e. their states) depend upon the realization of their private information at
date t¡1 (i.e. players ignore their private information from previous dates). Let
ºt¡1 denote the player’s private information realization at date t ¡ 1: Player 1
continues with ¾C if ºt¡1 = Dc; if ºt¡1 = Dd; she continues in period t with ¾D:5
Player 2’s continues with ¾C if ºt¡1 = Cd; and continues with ¾D if ºt¡1 = Dd:
If ºt¡1 2 fCc; Dcg; player 2 continues with ¾C if ¹2(ºt¡1) > ¼(±; "; ») and with
¾D if ¹2(ºt¡1) · ¼(±; "; »):

Our analysis proceeds as follows. First, we show that player 2 is willing to
randomize in the asymmetric phase provided that ¸ is appropriately chosen,
and that the payo¤s associated with this class of equilibria tend to (1+g+l

1+l ; 0)
as the noise vanishes. Subsequently, we shall demonstrate that all players are
choosing optimally at every information set.

Write W2(D) for the payo¤ of player 2 in the asymmetric phase given that
he plays D; and W2(C) for the payo¤ in the asymmetric phase from playing C.
Since W2(D) = W2(C) = W2; we have

W2(D) = ±(1 ¡ ¸)W2 + ±¸V2(D) (16)

where V2(D) is the expected payo¤ to player 2 conditional on the fact that
the asymmetric phase has ended and that he has played D: Similarly, letting

5 We show that any strategy which plays C in the asymmetric phase is dominated, and
hence we need not de…ne precisely the optimal continuation strategy after playing C: The
existence of an optimal continuation strategy follows from the same argument as in Sekiguchi
[13]. Since player 1 never plays C in the asymmetric phase; his continuation after his own
deviation does not a¤ect player 2’s incentives:
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V2(C) be the expected payo¤ to 2 conditional on the fact that the asymmetric
phase has ended and that he has played C; we have

W2(C) = (1 ¡ ±)(¡l) + ±(1 ¡ ¸)W2 + ±¸V2(C) (17)

Clearly, V2(D) ! 0 as ("; ») ! (0; 0): We now show that V2(C) ! 1 as
("; ») ! (0; 0):Let V2(Cd) (resp. V2(Cc)) denote the continuation payo¤ at the
end of the asymmetric phase, conditional on Cd (resp. Cc): Since player 1 plays
D for sure in the asymmetric phase, we have

V2(C) = (1 ¡ " ¡ »)V2(Cd) + (" + »)V2(Cc) (18)

Hence it su¢ces to establish that V2(Cd) ! 1 as ("; ») ! (0; 0):Write ¹2(Cd)
for the probability that player 1’s continuation strategy is ¾C ; given that ºt¡1 =
Cd: Since ¹2(Cd) ¸ 1¡2"¡»

1¡"¡» ; ¹2(Cd) ! 1 as " ! 0: Hence from equation (1)
V2(Cd) ! VCC ; where VCC ! 1 as ("; ») ! (0; 0):

Hence if " + » is su¢ciently small and ± > l
1+l ; there exists a value of ¸

which equates W2(C) and W2(D). Further, as (" + ») ! 0; ¸ ! (1¡±)l
± ; and

player 2’s payo¤ converges to zero:
If À ! 1; player 1’s per-period payo¤ tends to (1 + g) in the asymmetric

phase, and 1 in the cooperative phase. By substituting for the limiting value
of ¸ which is (1¡±)l

± ; we see that player 1’s payo¤ converges to 1+g+l
1+l : (We shall

establish later that À ! 1):
We now verify that each player plays optimally at each information set in this

equilibrium. In the asymmetric phase, this is so for player 2 by construction,
since he is indi¤erent between C and D: It is easy to see that player 1 also
plays optimally in the asymmetric phase, since she is choosing her one shot best
response.6

Consider now the transition to the cooperative phase, i.e. the player’s actions
in the …rst period after the sunspot signals at the end of the asymmetric phase.
Since players only condition on their private information in the previous period,
we may focus on this alone. Player 1 has two possible information sets, (Dc) and
(Dd); whereas player 2 has four possible information sets. Let ¹i(º) denote the
probability assigned by player i to her opponent’s continuation strategy being
¾C ; given that i is at information set º:

As in the previous section, we shall assume that maxf"; »g < 1
6 : Furthermore,

as in the previous section, we assume that ¼(±; "; ») 2 (1
2 ; µ) — this assumption

on ¼ does not imply any restrictions upon g or l: However, if we invoke the
assumption g ¸ l in A2, then we may also choose ¼ to be arbitrarily close to

6 It is possible that playing C in the asymmetric phase increases player 1’s continuation
payo¤ in the cooperative phase. However, it is easy to see that such an increase can never
o¤set the loss from playing C: A simple proof is as follows. If playing C in the asymmetric
phase is optimal for 1, then playing C in every period in the asymmetric phase is also optimal.
The overall payo¤ of this strategy is approximately 1 if the noise is small, whereas the payo¤
of player 1 in the equilibrium tends to 1+g+l

1+l ; which is strictly greater.
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its upper bound. We shall also assume that À 2 (¼; µ("; »)): Since µ ! 1 as
("; ») ! (0; 0) we can also have À ! 1:

Consider …rst the beliefs of player 2: Let ¹2(:) denote the probability assigned
by 2 to the event that 1’s continuation strategy is ¾C : Since player 1 plays ¾C
at Dc and ¾D at Dd; and since player 1 does not play C in the asymmetric
phase, we have

¹2(Cd) =
1 ¡ 2" ¡ »
1 ¡ " ¡ »

> µ (19)

Since ¼ < µ; it is optimal to continue with ¾C today at information set Cd.
Further, we have

ÂCd(¹2(Cd)) =
(1 ¡ 2" ¡ »)"

(1 ¡ 2" ¡ »)(" + ») + (1 ¡ " ¡ »)"
<

1
2

(20)

Hence it is optimal for player 2 to switch to the defection phase if he receives
the signal Cd at any date in the future.

At Dd; we have

¹2(Dd) =
"

1 ¡ " ¡ »
(21)

This is clearly less than 1
2 since max f"; »g < 1

6 ; so that it is optimal to
continue with ¾D:

Consider now the beliefs of player 2 at (Cc) and (Dc); i.e. at the information
sets where player 2 knows that there has been at least one error in the signals.

¹2(Dc) =
»

» + "
(22)

¹2(Cc) =
"

» + "
(23)

Recall that player 2 plays ¾D at least at one of these information sets, since
the above probabilities cannot be both greater than ¼; since this is greater than
one-half. Hence there are three possibilities: either both ¹2(Dc) and ¹2(Cc) are
less than ¼; or exactly one of these is greater than ¼: Now if ¹2(:) < ¼ at any
information set, it is optimal to continue with ¾D today, and at every future
date. Hence it remains to verify the case when ¹2(:) ¸ ¼:

Suppose that »
»+" > ¼; so that player 2 plays ¾C at Dc: If »

»+" · µ; lemma
2 veri…es that it is optimal to continue with ¾C in this case. Hence consider the
case where »

»+" > µ: We have that ¹ > µ ) ÂCc(¹) < ¹: Further, since ÂCd is
an increasing function, it su¢ces to verify that ÂCd(

»
»+") < ¼; since this implies

that ÂCd(¹) < ¼ for ¹ = Âk
Cc(

»
»+") for any k:
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ÂCd(
»

" + »
) =

"»
»(" + ») + "(1 ¡ " ¡ »)

(24)

This is less than 1
2 if maxf"; »g is less than 1

6 : Hence player 2’s continuation
strategy is optimal at Dc:

Finally, we consider the case where that player 2 plays ¾C at Cc; i.e. when
"

"+» > ¼: Note that in this case A1 is violated. Hence we assume A2, which
ensures that we can make ¼ arbitrarily close to its upper bound µ by selecting
± su¢ciently close to g

1+g : We can …nd a value of ¼ such that ÂCd(
"

"+» ) < ¼
provided that ÂCd(

"
"+» ) is less than the upper bound for ¼; i.e.

ÂCd(
"

" + »
) =

"2

"2 + » ¡ »2 < µ (25)

It is easily veri…ed that the inequality above is ensured by condition A2.
Consider now the beliefs of player 1: Her beliefs will depend upon player 2’s

strategy, which in turn depends upon the parameters of the signal distribution,
and as we have seen, there are three possible cases.

Consider …rst the case where 2 plays ¾C only at information set Cd:

¹1(Dc) =
À(1 ¡ 2" ¡ »)

À(1 ¡ " ¡ ») + (1 ¡ À)(" + »)
(26)

Note that the expression is such that ¹1(Dc) = ÂCc(À), where ÂCc is the
belief revision operator de…ned in the previous section. Hence it follows that if
À 2 [ ¼; µ); it follows that Âk

Cc(À) 2 (¼; µ); 8k; and hence it is optimal for player
1 to continue with ¾C at every information set.

Consider 1’s beliefs at (Dd): Once again, it is easy to verify that ¹1(Dd) =
ÂCd(À); and since À < µ; it is optimal to continue with ¾D at this information
set.

Consider next the case where ¾2(Cd) = ¾2(Cc) = ¾C and ¾2(Dd) =
¾2(Dc) = ¾D: In this case, assumption A2 applies, so that we may choose
¼ close to its upper bound. We have

¹1(Dc) =
À(1 ¡ " ¡ »)

À(1 ¡ " ¡ ») + (1 ¡ À)(" + »)
(27)

If À > ¼; then ¹1(Dc) > ¼ so that it is optimal to start by playing ¾C in
this case. To see that player 1 will …nd it optimal to switch to ¾D on receiving
a bad signal, note that requires

ÂCd(¹1(Dc)) =
À"

" + »
< ¼ (28)
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Now if ¹1(Dc) · µ; lemma 2 has veri…ed that a player who begins with ¾C
will switch to ¾D on receiving signal Cd in any subsequent period. If ¹1(Dc) > µ;
it su¢ces to verify that ÂCd(¹1(Dc)) < µ; which is the upper bound for ¼: This
yields the condition

À <
(" + »)µ

"
(29)

Since À < µ; this condition is also satis…ed.
Finally, we consider the case where ¾2(Cd) = ¾2(Dc) = ¾C and ¾2(Dd) =

¾2(Cc) = ¾D:

¹1(Dc) =
À(1 ¡ 2" ¡ ») + (1 ¡ À)»

À(1 ¡ " ¡ ») + (1 ¡ À)(" + »)
<

1 ¡ 2" ¡ »
1 ¡ " ¡ »

(30)

Hence it su¢ces to evaluate ÂCd at the upper bound, which yields

ÂCd(
1 ¡ 2" ¡ »
1 ¡ " ¡ »

) =
(1 ¡ 2" ¡ »)"

(1 ¡ 2" ¡ »)(" + ») + (1 ¡ " ¡ »)"
<

1
2

(31)

Hence ÂCd(¹1(Dc)) < 1
2 for every value of À:

We have therefore proved that the payo¤ (1+g+l
1+l ; 0) (and obviously the pay-

o¤ (0; 1+g+l
1+l ) can be approximated under assumption A provided that ± >

maxf g
1+g ; l

1+lg and provided that " and » are su¢ciently small. The payo¤
(1; 1) has been approximated under a weaker set of assumptions (± > g

1+g )
and " and » su¢ciently small), and the payo¤ (0; 0) is a static Nash payo¤.
Since any payo¤ individually rational feasible payo¤ is a convex combination of
these payo¤s, and can be achieved via public randomization, we have proved
the following theorem.

Theorem 7 Assume that Assumption A is satis…ed, and players observe a pub-
lic randomization device, then for any individually rational feasible payo¤ vector
u = (u1; u2) and any number ³ > 0, there exist "(³) > 0; »(³) > 0 such that there
exists a sequential equilibrium with payo¤s within ³ distance of u provided that
" < "(³) and » < »(³) and ± > maxf g

1+g ; l
1+lg:

This result is most closely related to those obtained in a paper by Pic-
cione [12], who also analyzes the prisoners’ dilemma with imperfect private
monitoring. Our results di¤er, both in terms of substance and in the tech-
niques/strategies used. Piccione’s substantive results are that full cooperation
can always be approximated, and further, any individually rational feasible pay-
o¤ can be approximated in a class of prisoners’ dilemma games, i.e. for games
where l ¸ g: The “folk theorem” condition A in the present paper is, in a sense,
the opposite of Piccione’s condition. More recently, Ely and Välimäki [5] have
considerably simpli…ed the technique used in Piccione, and generalized the folk
theorem obtained there. We shall discuss the di¤erences between the approach
of the present paper and the approach of Piccione and Ely-Välimäki in the
concluding section.
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4 The n-player case
In this section, we extend the approximate e¢ciency result to the n-player case.
Let N = f1; 2; :::; ng be the set of players and G be the stage game played by
those players. The stage game G is as follows. Player i chooses an action ai from
the action set Ai = fC;Dg : Actions are not observable to the other players and

taken simultaneously. A n-tuple action pro…le is denoted by a 2 A =
n
¦

i=1
Ai: An

action pro…le of all players but player i is a¡i 2 ¦
j 6=i

Aj :

Each player receives an (n ¡ 1)-tuple private signal pro…le about all the other
players’ actions. Let !i = (!i;1; :::; !i;i¡1; !i;i+1;:::; !i;n) 2 fc; dgn¡1 = ­i be a
generic signal received by player i where !i;j stands for player i’s signal about
player j0s action: A generic signal pro…le is denoted by ! = (!1; :::; !n) 2 ­. All
players have the same payo¤ function u. Player i’s payo¤ u (ai; !i) depends on
her own action ai and private signal !i. Other players’ actions a¤ect a player i’s
payo¤ only through the distribution over the signal which player i receives. The
distribution conditional on a is denoted by p (!ja). It is assumed that p (!ja)
are full support distributions, that is, p (!ja) > 0 8a8!: The space of a set of
full support distributions fp (!ja)ga2A is denoted by P:

We also introduce the perfectly informative signal distribution P0 = fp0 (!ja)ga2A,
where, for any a 2 A; p0 (!ja) = 1 if !i = a¡i for all i. The whole space of the
information structure P

S
P0 is endowed with the Euclidean norm.

Since we are interested in the situation where information is almost perfect,
we restrict attention mainly to a subset of P where information is almost perfect.
Information is almost perfect when every person’s signal pro…le is equal to the
actual action pro…le with probability larger than 1 ¡ " for some small number
":

To sum up, the space of the information structure we deal with in this section
is the following subset of P :

P" =

(
fp (!ja)ga2A 2 <n£(n¡1)£2n

++

¯̄
¯̄
¯

p (!ja) > 1 ¡ " if !i;j = c , aj = C for all i; j
and 8a,

P
!

p (!ja) = 1

)

(32)

and we use p" for a generic element of P":
A player’s realized payo¤ only depends on the number of bad signals d

that a player receives. Let d (!i) be the number of d contained in !i:Then,
u (ai; !0

i) = u (ai; !00
i ) if d (!0

i) = d (!00
i ) for any ai: Let u

¡
ai; dµ

¢
be the payo¤

of player i when d (!i) = µ: The deviation gain when µ defections are observed
is g (µ) = u

¡
D;dµ

¢
¡ u

¡
C; dµ

¢
; which is strictly positive for all µ: The largest

deviation gain and the smallest deviation gain is g and g respectively, where
g = max

0·k·n¡1
g (k) and g = min

0·k·n¡1
g (k) :

We impose the following symmetry assumption on p";
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p (!ja) = p
¡¡

!¿(i)¿(j)
¢
j
¡
a¿(1); :::; a¿(i); :::; a¿(N)

¢¢
(33)

for any permutation ¿ : N ! N and any a 2 A:

This allows us to treat all the players in a symmetric way and to focus on
only one player without loss of generality. Let U

¡¡
ai;Dµ

¢
: p

¢
be the expected

payo¤ of player i when µ players are playing D: The payo¤s U
¡¡

C;D0
¢

: p
¢

and
U

¡¡
D;Dn¡1

¢
: p

¢
are normalized to 1 and 0 respectively for all i: It is assumed

that (1; ::; 1) is the symmetric e¢cient stage game payo¤.
The stage game G is repeated in…nitely by n players, who discount their pay-

o¤s with a common discount factor ± 2 (0; 1) : Time is discrete and denoted by
t = 1; 2; ::::Player i’s private history is ht

i =
¡¡

a1
i ; !1

i
¢
; :::;

¡
at¡1

i ; !t¡1
i

¢¢
for t = 2

and h1
i = ;: Let Ht

i be the set of all such history ht
i and Hi =

1S
t=1

Ht
i : Player i’s

strategy is a sequence of mappings ¾i = (¾i;1; ¾i;2; ::::) ; each ¾i;t being a map-
ping from Ht

i to probability measures on Ai and denote ¾i (ht
i) for ¾i;t (ht

i) : Dis-

counted average payo¤ for player i is V (¾ : p; ±) = (1 ¡ ±)
1P

t=1
±t¡1E¾

p [u ((at
i; !t

i))] ;

where the probability measure on Ht
i is generated by (¾; p).

For this n-player repeated prisoner’s dilemma, ¾C and ¾D are de…ned as the
partial continuation strategies which are realization equivalent to the following
grim trigger strategy and permanent defection respectively:

¾C (ht
i) =

½
C if ht

i = ((C; c) ; :::; (C; c)) or t=1
D otherwise

¾D (ht
i) = D for all ht

i 2 Hi

where c = (C; :::; C) :
This grim trigger strategy is the harshest one among all the variations of

grim trigger strategies in the n player case. Players using ¾C switch to ¾D as
soon as they observe any signal pro…le which is not fully cooperative. When
player i is mixing ¾C and ¾D with probability (¹i; 1 ¡ ¹i) ; that strategy is
denoted by ¹i¾C + (1 ¡ ¹i)¾D:

Suppose that either ¾C or ¾D is chosen in the …rst period by all players. Let
µ 2 £ be the number of players using ¾D as a continuation strategy among n
players. Then a probability measure ¹¡i (ht

i; p) on the space £ = f0; 1; :::; n ¡ 1g
is derived conditional on the realization of the private history ht

i: Clearly, this
measure also depends on the initial level of mixture between ¾C and ¾D by every
player, but this dependence is not shown explicitly as it is obvious. Let U be
the space of such probability measures, which is an n ¡ 1 dimensional simplex.

In the two player case, a player’s strategy is represented as a function of
belief, using the fact that the other player is always playing either ¾C or ¾D on
and o¤ the equilibrium path. Note that the space of the other players’ “types”
is much larger. However, there is a convenient way to summarize relevant infor-
mation. We classify £ into two sets; f0g and f1; :::; n ¡ 1g ; that is, the state no
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one have ever switched to ¾D and the state where there is at least one player who
has already switched to ¾D. Player i0s conditional subjective probability that
no player has started using ¾D is denoted by Á

¡
¹¡i

¢
= ¹¡i (0) given ¹¡i 2 U :

The reason why we just focus on this number is that the exact number of players
who are playing ¾D does not make much di¤erence to what will happen in the
future given that everyone is playing ¾C . As soon as someone starts playing
¾D, every other player starts playing ¾D with very high probability from the
very next period on by the assumption of almost perfect monitoring. What is
important is not how many players have switched to ¾D; but whether anyone
has switched to ¾D or not.

Finally, let V (¾i; µ : p; ±) be player i’s discounted average payo¤ when µ
other players are playing ¾D and n ¡ µ ¡ 1 other players are playing ¾C : We
need the following notations:

V
¡
¾i;¹¡i : p; ±

¢
=

n¡1X

µ=0

V (¾i; µ : p; ±)¹¡i (µ) (34)

4V (µ : p0; ±) = V (¾C ; µ : p0; ±) ¡ V (¾D; µ : p0; ±) (35)

g
¡
¹¡i; p

¢
=

n¡1X

µ=0

©
U

¡¡
D;Dµ¢ : p

¢
¡ U

¡¡
C;Dµ¢ : p

¢ª
¹¡i (µ)

4.1 Belief Dynamics and Best Response
For the two player case, the equilibrium strategy was described as a mapping
from U to 4Ai. The equilibrium strategy we will construct here has a similar
structure except that belief lies in a larger space. It has the following expression:

½
¡
¹¡i

¢
=

8
<
:

C if ¹¡i 2 UC

¼ if ¹¡i 2 UI

D if ¹¡i 2 UD
(36)

where UC ;UI ;UD are mutually exclusive and exhaustive sets in U ; and ¼
means playing C with probability ¼ and playing D with probability 1 ¡ ¼:

In order to verify that ½ is a Nash equilibrium and achieves the approximate
e¢cient payo¤, we strengthen the path dominance argument used in Sekiguchi
[13] instead of appealing to the one-shot deviation argument used in the previous
sections. The argument is devided into several steps. First step is to give an
almost complete characterization of the unique optimal action as a function of
belief. As a next step, we analyze the dynamics of belief by introducing natural
assumptions on the information structure when players are playing either ¾C
or ¾D: The third step is to check consistency of this strategy pro…le, that is, to
check if players are actually playing either ¾C or ¾D by following ½

¡
¹¡i

¢
.

Once it is established that ½ is a Nash equilibrium, then we can use the fact
that there exists a sequential equilibrium which is realization equivalent to a
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Nash equilibrium if the game is of non-observable deviation. Finally, as in the
two player case, we can use a public randomization device or divide the original
repeated game to component repeated games to implement the same payo¤ for
large ±.

After we prove the existence of sequential equilibrium which is realization
equivalent to ½

¡
¹¡i

¢
and approximates the e¢cient outcome, we show, with

one more assumption, that ½
¡
¹¡i

¢
itself is actually a sequential equilibrium.

The unique optimal action is indeed shown to have exactly the same form as
½

¡
¹¡i

¢
for a certain range of ± if monitoring is almost perfect.

Before analyzing the unique optimal action, we …rst extend one property
which holds in the two player case to the n¡player case. In the two player
case, the di¤erence in payo¤s by ¾C and ¾D is linear and there is a unique
¼ (±; "; ») where a player is indi¤erent between ¾C and ¾D with perfect moni-
toring. When the number of players is more than two; the corresponding object
V

¡
¾C ;¹¡i : p0; ±

¢
¡ V

¡
¾D;¹¡i : p0; ±

¢
is a slightly more complex. Even when

players randomize independently and symmetrically playing ¾C with probability

¹ and ¾D with probability (1 ¡ ¹), that is, ¹¡i (µ) =
n¡1P
µ=0

(1 ¡ ¹)µ ¹n¡1¡µ
¡n¡1

µ

¢

for µ = 0; :::; n ¡ 1, it is a n ¡ 1 degree polynomial in ¹ 2 [0; 1] : However, if
± > g(0)

1+g(0) ; it is possible to show that there exists a unique ¹ 2 (0; 1) such that
V

¡
¾C ;¹¡i : p0; ±

¢
¡ V

¡
¾D;¹¡i : p0; ±

¢
= 0:

Lemma 8 If ± > g(0)
1+g(0) ; there exists a unique ¹¤ 2 (0; 1) such that

n¡1P
µ=0

(1 ¡ ¹)µ ¹n¡1¡µ
¡n¡1

µ

¢
4V (µ : p0; ±) = 0

Proof. Let f (¹) =
n¡1P
µ=0

(1 ¡ ¹)µ ¹n¡1¡µ
¡n¡1

µ

¢
4V (µ : p0; ±) : Since f (1) > 0;

f (0) < 0 and f is continuous, existence of such ¹ is guaranteed. To show
uniqueness, we prove f (¹) = 0 ) @f(¹)

@¹ > 0: Suppose that f (¹) = 0: Then,

@f (¹)
@¹

(37)

=
n¡1X

µ=0

n
(1 ¡ ¹)µ (n ¡ 1 ¡ µ)¹n¡2¡µ ¡ µ (1 ¡ ¹)µ¡1 ¹n¡1¡µ

oµ
n ¡ 1

µ

¶
4V (µ : p0; ±)(38)

= ¡
n¡1X

µ=0

µ (1 ¡ ¹)µ ¹n¡1¡µ
µ

1
¹

+
1

1 ¡ ¹

¶µ
n ¡ 1

µ

¶
4V (µ : p0; ±) (by f (¹) = 0)

Since 4V (µ : p0; ±) < 0 for µ ¸ 1; @f(¹)
@¹ > 0:¥

Let ¼ (±; p0) be this level of mixture where players are indi¤erent between
¾C and ¾D and monitoring is perfect, and denote the associated belief on £ by
¹¼

¡i:

20



The following lemma extends a useful property in the two player case to the
n player case.

Lemma 9 ¼ (±; p0) ! 1 as ± # g(0)
1+g(0)

Proof. See Appendix

When monitoring is almost perfect, V
¡
¾C ;¹¡i : p"; ±

¢
¡ V

¡
¾D;¹¡i : p"; ±

¢

is very close to V
¡
¾C ;¹¡i : p0; ±

¢
¡ V

¡
¾D;¹¡i : p0; ±

¢
: Actually, it is easy to

see that the former converges to the latter uniformly in ¹ as " ! 0:7 Hence,
we can …nd ¼ (±; p") in the neighborfood of ¼ (±; p0) when monitoring is almost
perfect.

Now we derive the unique optimal action as a function of ¹¡i: If monitoring
is perfect, then V

¡
¾C ;¹¡i : p0; ±

¢
¡ V

¡
¾D;¹¡i : p0; ±

¢
> 0 if and only if C is

the unique optimal action for this belief ¹¡i: We show that the unique optimal
action with almost perfect monitoring is almost the same. So, this result is
essentially the Maximum theorem in the sense that the optimal choice is “con-
tinuous”. As a …rst step, the following lemma shows that ¾D is optimal if a
player knows that someone has switched to the permanent defection and " is
small.

Lemma 10 There exists a b" > 0 such that Vi
¡
¾i;¹¡i : p"; ±

¢
is maximized by

¾D for any pb"; if ¹¡i (µ) = 1 for any µ 6= 0.

Proof. Take ¾D and any strategy which starts with C. The least deviation
gain is (1 ¡ ±) g: The largest loss caused by the di¤erence in continuation payo¤s
with ¾D and the latter strategy is ±"V : Setting b" small enough guarantees that
(1 ¡ ±) g > ±"V for any " 2 (0;b") : Then, D must be the optimal action for
any such ": Since players are using ¾D, ¹¡i (µ) = 1 for some µ 6= 0 in the next
period. This implies that D is the unique optimal action in all the following
periods. ¥

Using p (¢j¢) and given the fact that all players are playing either ¾C or ¾D;
we de…ne a transition probability of the number of players who have switched
to ¾D: Let q (ljm) be a probability that l players will play ¾D from the next
period when m players are playing ¾D now. In other words, this q (ljm) is a
probability that l¡m players playing C receive the signal d when n¡m players
play C and m players play D: Of course, q (ljm) > 0 if l = m and q (ljm) = 0 if
l < m.

The following lemma provides various informative and useful bounds on the
variations of discounted average payo¤s caused by introducing small imperfect-
ness in private monitoring.

Lemma 11
7 Also note that convergence of V

¡
¾i;¹¡i : p"; ±

¢
to V

¡
¾i;¹¡i : p0; ±

¢
is independent of

the choice of the associated sequence fp"g because of the de…nition of P".
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1. inf
p"2P"

V (¾C ; 0 : p"; ±) = (1¡±)+±"V
1¡±(1¡")

2. Given ± 2
³

g(0)
1+g(0) ; 1

´
; There exists a " > 0 such that for any " 2 [0; "] ;

sup
¾i;p"2P"

V (¾i; 0 : p"; ±) 5 1¡±+±"V
1¡±(1¡")

Proof. (1): For any " 2 (0; 1) and p" 2 P";

V (¾C ; 0 : p"; ±) = (1 ¡ ±) + ±q (0j0)V (¾C ; 0 : p"; ±) + ± (1 ¡ q (0j0))V (39)

So,

V (¾C ; 0 : p"; ±) = (1 ¡ ±) + ± (1 ¡ q (0j0)) V
1 ¡ ±q (0j0) = (1 ¡ ±) + ±"V

1 ¡ ± (1 ¡ ")
(40)

(2): Given ± 2
³

g(0)
1+g(0) ; 1

´
; it is easy to check that V (¾C ; 0 : p0; ±) >

V (¾D; 0 : p0; ±) : Pick " small enough such that (i) V (¾C ; 0 : p"; ±) > V (¾D; 0 : p"; ±)
for any p" and (ii) " < b": Let ¾¤

0 be the optimal strategy given that everyone
is using ¾C :8 Suppose that ¾¤

0 assigns D for the …rst period. Then for any
" 2 [0; "] ;

V (¾¤
0; 0 : p"; ±) 5 (1 ¡ ±)U

¡¡
D;D0

¢
: p"

¢
+

±
½

q (1j1)V (¾¤
0; 0 : p"; ±) +

nP
µ=2

q (µj1)V (¾D; µ ¡ 1 : p"; ±)
¾

(41)

In this inequality, the second component represents what player i could get
if she knew the true continuation strategies of her opponents at each possible
state. To see that this additional information is valuable, suppose that the
continuation strategy of ¾¤

0 leads to a higher expected payo¤ than V (¾¤
0; 0 : p"; ±)

or V (¾D; µ ¡ 1 : p"; ±) at the corresponding states, then this contradicts the
optimality of ¾¤

0 or ¾D by Lemma 10. Hence this inequality should hold.
Then, for any " 2 [0; "] ;

V (¾¤
0; 0 : p"; ±) 5

(1 ¡ ±)U
¡¡

D;D0
¢

: p"
¢

+ ±
nP

µ=2
q (kj1)V (¾D; µ ¡ 1 : p"; ±)

1 ¡ ±q (1j1) (42)

= V (¾D; 0 : p"; ±)
< V (¾C ; 0 : p"; ±)

8 Such ¾¤ exists because the strategy space is a compact space in product topology, on
which discounted average payo¤ functions are continuous. Of course, this ¾¤ depends on the
choice of p":

22



Since this contradicts the optimality of ¾¤
0; ¾¤

0 has to assign C for the …rst
period.

Now,

V (¾¤
0; 0 : p"; ±) 5 (1 ¡ ±) + ±q (0j0)V (¾¤

0; 0 : p"; ±) + ± (1 ¡ q (0j0))V (43)

So,

V (¾¤
0; 0 : p"; ±) 5 (1 ¡ ±) + ± (1 ¡ q (0j0))V

1 ¡ ±q (0j0) 5 (1 ¡ ±) + ±"V
1 ¡ ± (1 ¡ ")

(44)

This implies that sup
¾i;p"2P"

Vi (¾i; 0 : p"; ±) 5 1¡±+±"V
1¡±(1¡") for any " 2 [0; "] : ¥

(1) means that a small departure from the perfect monitoring does not reduce
the payo¤ of ¾C much when all the other players are using ¾C . (2) means that
there is not much to be exploited by using other strategies than ¾C with a small
imperfection in the private signal as long as all the other players are using a ¾C .

The following result is an almost complete characterization of the optimal
action as a function of ¹¡i.

Proposition 12 Given ±; for any ´ > 0; there exists a " > 0 such that for any
p";

² it is not optimal to play C for player i if ¹¡i satis…es Á
¡
¹¡i

¢
5 1¡±

± g
¡
¹¡i; p0

¢
¡

´

² it is not optimal to play D for player i if ¹¡i satis…es Á
¡
¹¡i

¢
= 1¡±

± g
¡
¹¡i; p0

¢
+

´

Proof: (1): It is not optimal to play C if

(1 ¡ ±) g
¡
¹¡i; p"

¢
(45)

> ±
·
Á

¡
¹¡i

¢½
(1 ¡ ") sup

¾i;
V (¾i; 0 : p"; ±) + "V

¾
+

¡
1 ¡ Á

¡
¹¡i

¢¢
"V

¸

is satis…ed because then any strategy which plays C now is dominated by
¾D:

By Lemma 11.2., this inequality is satis…ed for any " 2 [0; "] and any p" if

(1 ¡ ±) g
¡
¹¡i; p"

¢
(46)

> ±
·
Á

¡
¹¡i

¢½
(1 ¡ ")

1 ¡ ± + ±"V
1 ¡ ± (1 ¡ ")

+ "V
¾

+
¡
1 ¡ Á

¡
¹¡i

¢¢
"V

¸
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LHS converges to (1 ¡ ±) g
¡
¹¡i; p0

¢
and RHS converges to ±Á

¡
¹¡i

¢
as

" ! 0: So, if ¹¡i satis…es Á
¡
¹¡i

¢
5 1¡±

± g
¡
¹¡i; p0

¢
¡ ´ for any ´ > 0;

then there exists a "0 ¡±; ´;¹¡i
¢

2 (0; ") and a neighborhood B
¡
¹¡i

¢
of ¹¡i

such that C is not optimal for any p"0(±;´;¹¡i) and any ¹0
¡i 2 B

¡
¹¡i

¢
: This

"0 ¡±; ´;¹¡i
¢

> 0 can be set independent of ¹¡i by standard arguments because©
¹¡ijÁ

¡
¹¡i

¢
5 1¡±

± g
¡
¹¡i; p0

¢
¡ ´

ª
is a compact subset in a n¡1 dimensional

simplex.
(2): It is not optimal to play D if

(1 ¡ ±) g
¡
¹¡i; p"

¢
(47)

< ±
£
Á

¡
¹¡i

¢
f(1 ¡ ")V (¾C ; 0 : p"; ±) + "V g +

¡
1 ¡ Á

¡
¹¡i

¢¢
"V ¡ "V

¤

this inequality is satis…ed for " 2 (0; 1) and any p" if

(1 ¡ ±) g
¡
¹¡i; p"

¢
(48)

< ±
·
Á

¡
¹¡i

¢½
(1 ¡ ")

1 ¡ ± + ±"V
1 ¡ ± (1 ¡ ")

+ "V
¾

+
¡
1 ¡ Á

¡
¹¡i

¢¢
"V ¡ "V

¸

This inequality converges to Á
¡
¹¡i

¢
= 1¡±

± g
¡
¹¡i; p0

¢
as " ! 0: So, if ¹¡i

satis…es Á
¡
¹¡i

¢
= 1¡±

± g
¡
¹¡i; p0

¢
+´ for any ´ > 0; there exists a "00 ¡±; ´;¹¡i

¢

such that D is not optimal for any p" 2 P"00(±;´;¹¡i) and any ¹0
¡i around ¹¡i:

Again, "00 ¡±; ´;¹¡i
¢

can be set independent of ¹¡i:
Finally, setting " (±; ´) = min f"0 (±; ´) ; "00 (±; ´)g completes the proof. ¥

This proposition implies that the optimal action can be completely char-
acterized except for an arbitrary small area around the manifold satisfying
Á

¡
¹¡i

¢
= 1¡±

± g
¡
¹¡i; p0

¢
in a n ¡ 1 dimensional simplex; where player i is

indi¤erent between ¾C and ¾D with perfect monitoring, but we also character-
ize the optimal action for this region later.

Although this argument is essentially the path dominance argument used in
Sekiguchi [13] for n = 2, it extends that argument to the n¡player case and
provides a sharper characterization even for n = 2:

An immediate corollary of this proposition is that C is the unique optimal
action given that Á is su¢ciently close to 1, ± > g(0)

1+g(0) ; and " is small:

Corollary 13 Given ± > g(0)
1+g(0) ; there exists Á > 0 and " > 0 such that for any

p"; it is not optimal for player i to play D if Á 2
£
Á; 1

¤
:

Since the optimal action is almost characterized as a function of ¹¡i; now
we need to know the dynamics of ¹¡i associated with ¾C and ¾D. Given the

24



optimal action shown above, what we need for consistency is that ¹¡i stays
in the “C area” described by Proposition 12 as long as player i has observed
fully cooperative signals from the beginning and ¹¡i stays in the “D area” once
player i received a bad signal and started playing defection for herself.

Let Wk =
©
¹¡ijÁ

¡
¹¡i

¢
= 1¡±

± g
¡
¹¡i; p0

¢
¡ k

ª
; where k 2

¡
0; 1¡±

± g
¢
: When

k and " is small, Wk just covers the region where C is the unique optimal action
and the unique optimal action is indeterminate. We show that Át+n is always
above Á 2 (0; 1) if a player plays C, observes c; Át 2 Wk, and monitoring is
almost perfect.

Lemma 14 For any Á > 0; k 2
¡
0; 1¡±

± g
¢
; there exists e" such that for any " 2

(0;e") Á
¡
¹¡i

¡
ht+n

i ; p"
¢¢

= Á for ht+n
i = (ht

i; (C; c) ; :::; (C; c)) when ¹¡i (ht
i) 2

Wk.

Proof. Let ht+1
i = (ht

i; (C; c)) and Át
i = Á

¡
¹¡i (ht

i; p")
¢
:

Applying Bayes’ rule,

Át+1
i = Á

¡
¹¡i

¡
ht+1

i ; p"
¢¢

(49)

=
Át

ip (cj C)
Át

iP (!t
i = cj C) +

¡
1 ¡ Át

i
¢ P

at
¡i 6=c

P
¡
!t

i = cjat
¡i

¢
P

¡
at

¡ijht
i
¢

This function is increasing in Át
i and crosses 45± line once. Note that this

function is bounded below by '
¡
Át

i
¢

= Át
i(1¡")

Át
i+(1¡Át

i)"
: Let bÁ be the unique …xed

point of this mapping. Given that Át
i = Á

¡
¹¡i (ht

i; p")
¢

2 Wk; it is easy to see

that '
¡
Át

i
¢ ³

and bÁ
´

can be made larger than Á > 0 by choosing " small enough .

If Át
i < bÁ; then, as long as players continue to observe c; 'n

¡
Á1

i
¢

is going to
increase monotonically to bÁ: On the other hand, since Át+n

i = '
¡
Át+n¡1

i
¢
for

n = 1; 2; :::and ' is monotonically increasing, Át+n
i is larger than 'n

¡
Át

i
¢
; hence

larger than '
¡
Át

i
¢

for any n = 1; 2; :::: On the other hand, if Át
i = bÁ, then it

is clear that Át+n
i > 'n

¡
Át

i
¢

= bÁ > Á: These imply that
©
Át+n

i
ª1

n=1 is always
above Á:¥

The above lemma guarantees that players are con…dent that the other players
are cooperating after they observed a stream of cooperative signals and played
C all the time. The next lemma is used to show that player i plays ¾D once
a bad signal is observed or D has been played in the previous period. Let us
de…ne °p"

2 (0; 1) as the smallest number such that
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°p"
= p (cjC)P (!i = !0

ijC)P
!¡i

p (c;!¡ijC) P (!i = !0
ijc; fi (!¡i))

for any !0
i 6= c (50)

and

°p"
= p (!0

i; cjD;a¡i = C)
P (!i = !0

ijD;a¡i = C)
for any !0

i

where fi : !¡i 7! (fj (!¡i))j 6=i 2 ¦
j 6=i

Aj is a mapping such that fj (!j) = D

if and only if !j 6= c: The …rst condition implies that Ái will be below °p"

even if it is the …rst time for a player to observe anything other than c while
C has been played. The second condition means that Ái will be below °p"

independent of the signal received when D is played. We impose the following
regularity condition on the information structure we focus.

Assumption B: For some ° < 1; ° = °p"
.

Note that this assumption is not satis…ed in the two player case in the
previous sections. For example, ÂCd(1) or ÂDd(1) can be arbitrary close to 1
even if monitoring is almost perfect. However, we don’t need this assumption
when n = 2: This assumption helps us to establish our result for n = 3: The
following is an example of information structure which satis…es this assumption
when n = 3 independent of "9 :

Example: Totally Decomposable Case

p (!ja) = ¦
j

¦
i 6=j

f (!i;j jaj) for all a 2 A and ! 2 ­

where f (!ja) is a distribution function on fc; dg such that ! = a with very
high probability. Given the action by player j; the probability that player i 6= j
receives the right signal or the wrong signal about player j’s action is the same
across i 6= j. Also note that players’ signals are conditionally independent over
players.

The next lemma is an easy consequence of this assumption.

Lemma 15 Á
¡
¹¡i (ht

i; p")
¢

5 ° after histories such as ht
i =

¡
:::; (C; c) ;

¡
C;!t¡1

i
¢¢

for t = 3 where !t¡1
i 6= c or ht

i =
¡
:::;

¡
D;!t¡1

i
¢ ¢

Proof. See appendix.
9 An example of a more general class of p" which satis…es this assumption independent of

the level of " can be found in Obara [10].
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4.2 Construction of Sequential Equilibrium
Let us introduce the following notations:

UC
" =

©
¹¡ijV

¡
¾C ;¹¡i : p"; ±

¢
> V

¡
¾D;¹¡i : p"; ±

¢ª
(51)

UI
" =

©
¹¡ijV

¡
¾C ;¹¡i : p"; ±

¢
= V

¡
¾D;¹¡i : p"; ±

¢ª

UD
" =

©
¹¡ijV

¡
¾C ;¹¡i : p"; ±

¢
< V

¡
¾D;¹¡i : p"; ±

¢ª

These are subsets of the belief space U . UI
" is a manifold where player i is in-

di¤erent between ¾C and ¾D: In particular, ¹¼
¡i (±; p") 2 UI

" by de…nition. Note
that UC

" converges to UC
0 =

©
¹¡ijÁ

¡
¹¡i

¢
> 1¡±

± g
¡
¹¡i; p0

¢ª
and UD

" converges
to UD

0 =
©
¹¡ijÁ

¡
¹¡i

¢
< 1¡±

± g
¡
¹¡i; p0

¢ª
as " ! 0:

Now de…ne ½ as a mapping from ¹¡i 2 U to 4fC;Dg in the following way:

½¤
"
¡
¹¡i

¢
=

8
<
:

C if ¹¡i 2 UC
"

¼ (±; p") if ¹¡i 2 UI
"

D if ¹¡i 2 UD
"

(52)

We know from Proposition 12 that this function assigns the best response action
almost everywhere except for a neighborhood of UI

0 when " is small.
Now we use ½¤

"
¡
¹¡i

¢
to construct a Nash equilibrium approximating the

e¢cient outcome, for which there exists a realization equivalent sequential equi-
librium. All we have to do is to make sure that players are actually playing
either ¾C or ¾D on the equilibrium path after they initially randomize between
C and D.

Proposition 16 Suppose that Assumption B is satis…ed. Then there exists a
± 2

³
g(0)

1+g(0) ; 1
´

such that for any ± 2
³

g(0)
1+g(0) ; ±

´
there is a " (±) > 0 where, for

any p"; there exists a symmetric sequential equilibrium which is realization equiv-
alent to ½¤

"
¡
¹¡i

¢
, hence realization equivalent to ¼ (±; p") ¾C +(1 ¡ ¼ (±; p"))¾D:

Proof. Pick any ± > g(0)
1+g(0) such that if ± 2

³
g(0)

1+g(0) ; ±
´

; then ° <

¹¼
¡i (p0; ±) (0)

¡
< Á

¢
: First we prove that if Ái 5 °; then D is the unique optimal

action, hence the optimal continuation strategy is ¾D when " is small enough.
Note that player i is indi¤erent between ¾C and ¾D with belief Ái = ¹¼

¡i (p0; ±) (0)
with no noise, hence the following equality holds.

n¡1X

µ=0

¹¼
¡i (p0; ±) (µ)4V (µ : p0; ±) = 0 (53)

Suppose that Ái = ¹¡i (p0; ±) (0) 5 ° < ¹¼
¡i (p0; ±) (0) : We show that

n¡1P
µ=0

¹¡i (p0; ±) (µ)4V (µ : p0; ±) < 0 by comparing it to the above equality. If
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player i plays C here, then the positive payo¤ player i can get when µ = 0
decreases by at least

¡
¹¼

¡i (p0; ±) (0) ¡ °
¢
4V (µ : p0; ±) compared to the case

when Ái = ¹¼
¡i (p0; ±) (0) : On the other hand, the additional gain from playing

C when Ái 5 ° and µ 6= 0 is bounded above by
¡
1 ¡ ¹¼

¡i (p0; ±) (0)
¢
g compared

to the case when Ái = ¹¼
¡i (p0; ±) (0) : Since ¹¼

¡i (p0; ±) (0) ! 1 as ± # g(0)
1+g(0) by

Lemma 9, playing C is strictly dominated when ± is chosen to be close to g(0)
1+g(0) .

Any strategy playing C now continues to be dominated by ¾D even monitoring
is almost perfect by the same argument as in Lemma 1110 .

Now we check players’ incentive on the equilibrium path to prove that
½¤

"
¡
¹¡i

¢
is a symmetric Nash equilibrium. Players randomize between C and

D with probabiity ¼ (±; p") ; 1¡¼ (±; p") respectively in the …rst period. First of
all, Ái is strictly above Á as long as (C; c) has been observed by Lemma 14. C is
the unique optimal action for such Ái by Lemma 13. Next, when a player …rst
observes (C;! (6= c)) after the second period, Ái gets below ° by Lemma 15.
Hence, the unique optimal action is D by the above argument: If (C;! (6= c)) is
observed in the …rst period; then Ái is again clearly below ° for small " because
! is interpreted as a signal of ¾D being chosen in the …rst period rather than
an error. So, D is always the unique optimal action after this kind of history
which ends with (C;! (6= c)) : Finally, when D is played, it is always the case
that Ái 5 ° in the next period; hence the unique optimal action is again D:
These imply that ¹¡i 2 UC

" after (C; c) has been observed and ¹¡i 2 UD
" after

(C;! (6= c)) is observed or D is played in the previous period by de…nition of
UC

" and UD
" . So, ½¤

"
¡
¹¡i

¢
is a symmetric Nash equilibrium, which is clearly

realization equivalent to ¼ (±; p")¾C + (1 ¡ ¼ (±; p"))¾D:
Existence of a sequential equilibrium which is realization equivalent to ½¤

"
¡
¹¡i

¢

follows from the fact that this game is in a class of games with non-observable
deviation. See Sekiguchi [13] for detail.¥

Since the probability that everyone chooses ¾C in this sequential equilibrium;
¼ (±; p")

n¡1 ; gets closer to 1 as ± gets closer to g(0)
1+g(0) by Lemma 9, an outcome

arbitrary close to the e¢cient outcome can be achieved for ± arbitrary close to
g(0)

1+g(0) . For high ±; we can use a public randomization device again to reduce
± e¤ectively or use Ellison’s trick as in Ellison [4] to achieve an almost e¢cient
outcome although the strategy is more complex and no longer a grim trigger.
Hence, the following result is obtained.

Proposition 17 Suppose that Assumption B is satis…ed. Fix ± 2
³

g(0)
1+g(0) ; 1

´
:

Then for any ¿ > 0; there is a " > 0 such that for any p"; there exists a sequential
equilibrium whose symmetric equilibrium payo¤ is more than 1 ¡ ¿:

Finally we show that ½¤
"
¡
¹¡i

¢
itself is actually sequential equilibrium with

one more assumption:

Assumption C: If ¹¡i 2 UD
" ; then Ái 5 ° after (C;! (6= c)) is observed.

10 This argument is not necessary when n = 2 because of the property; ÂD! (¹) < ¹:
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Proposition 18 Suppose that Assumption B and C is satis…ed. For any ± 2³
g(0)

1+g(0) ; ±
´

; if " is small enough, then

² C is the unique optimal action if and only if ¹¡i 2 UC
"

² D is the unique optimal action if and only if ¹¡i 2 UD
"

Hence, ½¤
"
¡
¹¡i

¢
itself is a sequential equilibrium.

Proof: Fix ´ (±) > 0 in Proposition 12 and set k (±) > 0 slightly larger
than ´ (±) > 0 for each ± 2

³
g(0)

1+g(0) ; ±
´

: Take any ¹¡i such that Á
¡
¹¡i

¢
>

1¡±
± g

¡
¹¡i; p0

¢
¡ k and ¹¡i 2 UD

" : We prove that D is the unique optimal
action in this region if " is su¢ciently small. If a player plays C, then Lemma
14 and Assumption C imply that the continuation strategy is ¾C for small ".
This is because Ái > Á (±) as long as (C; c) realizes and Ái 5 ° holds otherwise.
Since ¾C is dominated by ¾D in this region, the unique optimal action should
be D:

Similarly, take any ¹¡i such that 1¡±
± g

¡
¹¡i; p0

¢
+ ´ > Á

¡
¹¡i

¢
and ¹¡i 2

UC
" : If D is played, then again the continuation strategy is ¾D by Lemma 15.

Since ¾D is dominated by ¾C in this region, the unique optimal action should
be C:

Since any other ¹¡i 2 UD
" satis…es Á

¡
¹¡i

¢
5 1¡±

± g
¡
¹¡i; p0

¢
¡ k and any

other ¹¡i 2 UC
" satis…es Á

¡
¹¡i

¢
= 1¡±

± g
¡
¹¡i; p0

¢
+´ for small " > 0; the proof

is complete.¥

5 Concluding Comments
The main point of this paper has been to develop “belief-based” strategies
as a way of constructing sequential equilibria in repeated games with private
monitoring. This a¤ords a major simpli…cation as compared to the traditional
method of analysis. While our construction has been restricted to the prison-
ers’ dilemma, and to a strategy pro…le which consists only of two continuation
strategies, the idea underlying this simpli…cation is generalizable. If player i
starts with a …nitely complex (mixed) strategy which induces k possible contin-
uation strategies, then the state space or the set of possible beliefs for player j
for the entire repeated game is a k ¡ 1 dimensional simplex.

The approach of the present paper is based on generalizing “trigger strat-
egy” equilibria to the private monitoring context. Under perfect or imperfect
public monitoring, such trigger strategy can be constructed so as to provide
strict incentives for players to continue with their equilibrium actions at each
information set. Mailath and Morris [8] show that one can construct equilib-
ria which provide similar strict incentives under private monitoring which is
“almost-public”. However, if private signals are not su¢ciently correlated, pure
trigger strategy pro…les fail to be equilibria. The approach in the present paper,
as in previous works such as Bhaskar and van Damme [3] and Sekiguchi [13],
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relies on approximating the grim trigger strategy with a mixed strategy. In the
basic construction, a player is indi¤erent between cooperating and defecting in
the initial period, but has strict incentives to play the equilibrium action at ev-
ery subsequent information set. In particular, player i’s strategy is measurable
with respect to her beliefs about player j’s continuation strategy. As Bhaskar
[2] shows, such mixed strategies are robust to a small amount of incomplete
payo¤ information as in Harsanyi’s [6]. In particular, Bhaskar [2] shows in the
context of the repeated prisoners’ dilemma, where stage game payo¤s are ran-
dom and private, there exists a strict equilibrium with behavior corresponding
to that of the mixed equilibrium of the present paper.11 In the intial period, a
player plays C for some realizations of his private payo¤ information, and D for
other realizations, and continues with a trigger strategy in subsequent periods,
independent of their payo¤ information.

The alternative approach to constructing non-trivial repeated game equilib-
ria with private monitoring is due to Piccione [12] and Ely and Välimäki [5]
12 . This approach relies on using player j’s mixed strategy to make a player i
indi¤erent between playing C and D at every information set. Since player i is
so indi¤erent, she is likewise willing to randomize so as to make j also indi¤er-
ent between his actions at each information set. In this approach, beliefs are
irrelevant, since a player’s continuation payo¤ function does not depend upon
her beliefs. Such equilibria seem to be less likely to survive if there is private
payof information, and indeed this question is the subject of current research.

Appendix.

Proof of Lemma 9.

When ± = g(0)
1+g(0) ; ¼ (±; p0) = 1 is the solution of the equation in ¹:

V
¡
¾C ;¹¡i : p0; ±

¢
¡ V

¡
¾D;¹¡i : p0; ±

¢
= 0 (54)

where ¹¡i (µ) = (1 ¡ ¹)µ ¹n¡1¡µ
¡n¡1

µ

¢
for µ = 0; :::; n ¡ 1:

We just need to show that @¼(±;p0)
@± j±= g(0)

1+g(0)
< 0 using the implicit function

theorem. Since,

V
¡
¾C ;¹¡i : p0; ±

¢
¡ V

¡
¾D;¹¡i : p0; ±

¢

= (1 ¡ ±)
n¡1X

µ=0

(1 ¡ ¹)µ ¹n¡1¡µ
µ

n ¡ 1
µ

¶
4 V (µ : p0; ±) (55)

= ¡ (1 ¡ ±)
n¡1X

µ=0

(1 ¡ ¹)µ ¹n¡1¡µ
µ

n ¡ 1
µ

¶
g (µ) + ±¹n¡1

11 This result is relevant since Bhaskar [1] considers a overlapping generations game with
private monitoring and shows that incomplete payo¤ information as in Harsanyi implies an
anti-folk theorem — players must play Nash equilibrium of the stage game in every period.

12 See also the work of Kandori [7] in the context of a …nitely repeated game.

30



a straightforward calculation gives the desired result as follows.

@¼ (±; p0)
@±

j±= g(0)
1+g(0)

= ¡
@Vi(¾C ;¹¼

¡i:p0;±)¡Vi(¾D;¹¼
¡i:p0;±)

@±
@Vi(¾C ;¹¼

¡i:p0;±)¡Vi(¾D;¹¼
¡i:p0;±)

@¹

j±= g(0)
1+g(0)

(56)

= ¡ 1 + g (0)
(1 ¡ ±) (n ¡ 1) (g (1) ¡ g (0)) + ± (n ¡ 1)

j±= g(0)
1+g(0)

= ¡ 1
n ¡ 1

(1 + g (0))2

g (1)
< 0

¥

Proof of Lemma 15

Suppose that ht
i =

¡
:::; (C; c) ;

¡
C;!t¡1

i
¢ ¢

with !t¡1
i = !0

i 6= c and t = 3: Át
i

is bounded above by Á0 which is obtained by Bayes’ rule after such an observation
when Át¡2

i = 1: That Á0 is given by

P
¡¡

!t¡2; !t¡1
i ; !t¡1

¡i
¢

= (c; !0
i; c) jµt¡2 = 0

¢

P
¡¡

!t¡2
i ; !t¡1

i
¢

= (c; !0
i) jµt¡2 = 0

¢ (57)

5 p (cjC)P (!i = !0
ijC)P

!¡i

p (c;!¡ijC)P (!i = !0
ijc; f (c;!¡i))

5 °

Similarly, when ht
i =

¡
:::;

¡
D;!t¡1

i
¢¢

with !t¡1
i = !00

i ; Át
i is bounded by

Át
i = Á

¡
¹¡i

¡
ht

i; p"
¢¢

(58)

5 p (!00
i ; cjD;a¡i = C)

P (!i = !00
i jD;a¡i = C)

5 ° (59)

¥
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