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1. INTRODUCTION

This paper studies multilateral negotiations in an economic context with ezternalities
where binding agreements forming coalitions can be written and renegotiated. These
features prevail in a variety of economic and social situations. For example, in mergers
and acquisitions, the merger of two firms (a binding agreement) may create positive or
negative externalities for other firms in the industry, and firms often expand through a
process of sequential mergers or acquisitions negotiations. Other important problems,
such as the formation of labor unions and coalitional governments, and trading in an
exchange economy also share many of these features. What coalitions are expected to
form? What are the expected values of players and coalitions? Our goal in this paper
is to propose a strategic or non-cooperative model of negotiations that incorporates
externalities and renegotiations, and to thoroughly analyze the solution that arises
from this model.

The search of solutions for coalitional bargaining games is an old problem that,
since the publication of von Neumann and Morgenstern’s (1944) seminal book, have
attracted the interest of many researchers. In one branch of the literature, cooperative
game theory using axioms and intuitive normative concepts have developed numerous
solution concepts to the problem, such as the Nash bargaining solution (Nash (1950,
1953)), the Shapley value (Shapley (1953)), the nucleolus (Schmeidler (1969)), the
core, among many others (see survey in Maschler (1992)). Another branch of the
literature, pursued the so called Nash program of establishing the non-cooperative
foundations supporting the cooperative approach. Along this line is the work of
Rubinstein (1982) and Binmore, Rubinstein and Wolinsky (1986) implementing the
Nash bargaining solution, Gul (1989) and Hart and Mas-Colell (1996) implement-
ing the Shapley value, Serrano (1993) implementing the nucleolus, and Perry and
Reny (1994) implementing the core. Unfortunately, most of the cooperative and
non-cooperative studies do not apply to problems where there are externalities and
renegotiations.!

While two-person bargaining problems are well-known, and most solution concepts

make similar predictions for the outcome (an equal split of the surplus), coalitional

!Myerson (1977) and Lucas and Thrall (1963) study cooperative games in partition function
form. Ray and Vohra (1999), Jehiel and Moldovanu (1995), Bloch (1996), and Yi (1997) use the
non-cooperative approach and allow for externalities but not renegotiations.



bargaining problems with three or more players are more complex due to the possi-
bility of coalition formation and renegotiations: on one hand, for situations without
externalities, the various existing solution concepts make significantly different pre-
dictions for the outcome; on the other hand, for situations with externalities, there
is a lack of solutions. What is the appropriate solution to apply to a particular
multilateral problem?

We consider in this paper economies in which there are only three players.? Each
player own a tradeable resource (or property right), and an exogenous set of param-
eters describes the gains of trade in the economy. The parameters of the game deter-
mine the value of all resources for all their possible combinations or coalitions, and
coalitions may create positive or negative externalities. The negotiation game evolves
with players making offers to acquire resources followed by players that have received
offers making their response. We allow for the possibility of coalitions, once formed,
to remain negotiating until all gains from trade have been exploited. Also, during the
negotiation, players may make offers that can be both conditional or unconditional
to acceptances (for example, an offer to players A and B could be conditional on
the acceptance of A and unconditional on the acceptance of B, or conditional on the
acceptances of both players, or unconditional to acceptances).

We show that the model has a unique stationary subgame perfect Nash equilibrium
outcome-named the coalitional bargaining value—and show that this solution is Pareto
efficient and continuous on the parameters of the game. Existence, uniqueness, and
Pareto efficiency results in non-cooperative coalitional bargaining models are novel
and surprising in light of the results in the literature.?

In addition, we show that the parameter space is divided into distinct convex
conical regions, and in each region the coalitional bargaining value is a linear function
of the parameters of the game. In the limit, as the interval between offers shrinks
to zero, the different regions into which the parameter space is divided collapses into

four regions (eight including all permutations). For games without externalities, in

2The general case with n players can be analyzed with a similar framework (see Gomes (2001)).
The main advantage of restricting the analysis to three-player games is that a complete characteri-
zation of the solution is possible, while in n-player games we can only obtain some general properties
of the solution.

3For example, in the non-cooperative bargaining models of Selten (1981) and Moldovanu (1992),
there can be multiple stationary solutions, and in Chartterjee et al. (1993), Seidmann and Winter
(1998), Okada (1996), and Ray and Vohra (1999) the solutions are not Pareto efficient.



one of the regions the coalitional bargaining value coincides with the Nash bargaining
solution, in another region with the Shapley value, and in the other regions with
the nucleolus. Therefore this paper offers a criteria to select a specific cooperative
solution for all games without externalities.

We also propose a simple criteria to deal with externalities: measure the worth of a
pairwise coalition by the value that it creates plus the amount of negative externalities
(or minus the amount of positive externalities) that it creates for the excluded player.
As we discuss next, each of the four relevant types of games can be described in terms
of the relative worth (measured accounting for externalities) of pairwise coalitions.
Furthermore, the strategies employed by players in each region have an intuitive
economic interpretation in terms of credible outside options (see also Sutton (1986)),
that serves to enhance our understanding of the related cooperative solution concepts,
and to extend them to environments with externalities.

First, the coalitional bargaining value is equal to the Nash bargaining solution
(equal split of the surplus) for games where the worth of all pairwise coalition is
less than a third of the grand coalition value (for example, unanimous bargaining
games). In this region no player is able to demand more than an equal share of
surplus because the outside option of forming a pairwise coalition is not credible.
An interesting comparative statics implication is that even if a player is relatively
stronger than others, but not too stronger, she should also get the same payoff as the
other players.

Second, the coalitional bargaining value coincides with the Shapley value for games
where the sum of the values created by all pairwise coalitions is greater than the grand
coalition value (for example, one-seller two-buyer market games, zero-sum games,
and majority voting games). In these games, there is an advantage from being the
proposer (first mover advantage) and a disadvantage from being excluded from a
pairwise coalition. The Shapley value arises as the equilibrium in problems where
the formation of all pairwise coalitions are credible options available to players. Note
that this is the opposite of what happens in the Nash bargaining solution case where
no pairwise coalition can credibly form.

Finally, there are two novel cases in which the coalitional bargaining value coin-
cides with the nucleolus: games where only the ‘natural coalition’ among two ‘natural
partners’ creates significant value, and games where only the two pairwise coalitions

including a ‘pivotal player’ create significant value. In the first case, the player ex-



cluded from the natural coalition agrees with a payoff lower than an equal split of
the surplus, and the natural partners equally split the gains from forming the natural
coalition—an outcome that is driven by the fact that only the natural coalition can
credibly form in equilibrium. In the second case, both non-pivotal players agree to
form a coalition with the pivotal player receiving a payoff lower than an equal split
of the surplus—an outcome that is driven by the fact that only the pairwise coalitions
including the pivotal player can credibly form. We illustrate these two new cases with
a mergers and acquisitions example in an oligopolistic industry in which there are two
natural merger partners, and an example of collective bargaining for wages where two
unions are better oftf bargaining separately with the firm rather than forming a larger
union to collectively bargain for wages.

We also discuss the connection between the coalitional bargaining value and the
core. This relationship can be illustrated with a situation where there is one seller
of a good and two buyers with an equal valuation for the good. This game has a
unique core allocation where the seller extracts all the surplus from the buyers, which
is significantly different than the coalitional bargaining value prediction-the Shapley
value. But isn’t the core a more reasonable prediction for this game? We believe that
the outcome of this game should be very different than the core’s prediction. The
main reason why the seller can’t extract the entire surplus from the buyers is that both
buyers have the option of forming a cartel to bid for the good, rather than launching
a bidding war. Thus, the seller rather than auctioning the good, prefers to negotiate
with one buyer, leaving the second buyer with nothing. Because all agreements are
binding, after any deal is closed (i.e, either a buyers’ cartel is formed or the good
is sold) there is no way for the player left out to undue the deal offering a slightly
better proposal (which is exactly the story motivating the core). In equilibrium, any
of three deals (sale of the good to one of the two buyers and formation of a buyers’
cartel) may occur leading to an expected outcome equal to the Shapley value.

Our model is different from other coalitional bargaining models for several reasons.
In the strategic models of Selten (1981), Chatterjee et al. (1993), Ray and Vohra
(1999), and Hart and Mas-Colell (1996), once a coalition reaches an agreement, it
cannot be further renegotiated and the coalition leaves the game (renegotiations are
also considered in Seidmann and Winter (1998) and Gul (1989)). Externalities in
coalitional bargaining are addressed by only a few studies including, in a setting very
similar to ours, Ray and Vohra (1999), and also Jehiel and Moldovanu (1995), Bloch



(1996), and Yi (1997). Finally, proposals in our model can be both conditional or
unconditional, while most papers on strategic bargaining only allow for conditional
offers (the exception being Krishna and Serrano’s (1996) analysis of unanimous bar-
gaining games where unconditional offers are permitted). With conditional offers a
rejection by even only one of the players receiving the offer blocks other players that
have accepted the offer from exiting the game with the amount offered to them. Ex-
panding the strategy set adds a new degree of realism to strategic bargaining, and
allows for a Pareto efficient equilibrium outcome to arise.

The remainder of the paper is organized as follows: Section 2 presents the nego-
tiation model, Section 3 establishes the uniqueness of the solution and the explicit
formula for the coalitional bargaining value, Section 4 studies the economic proper-
ties of the solution, and Section 5 concludes. The Appendix contains the proofs of all

theorems.

2. THE NEGOTIATION MODEL

Let N = {1,2, 3} represent three players each owning an indivisible tradeable resource
or right (for simplicity, we also refer to the resource owned by player i € N as
resource 7). Players at every period of the game can buy or sell resources in exchange
of a transfer of utility. Players that acquire resources may continue trading, and
players that sell their resources leave the game. There are a total of five different
ownership structures or coalition structures (c.s.): the initial ownership structure
{{1},{2},{3}} where all resources are owned by different players; {{i, j} ,{k}} where
one player, either ¢ or j, owns both resources {7, j} (this player is also referred to as
the coalition {4, j}); and finally { N} where one player owns all the resources.* Players
are expected utility maximizers and have a common per period discount factor equal
to 6 € (0,1).

A set of parameters v = (v, Vi, Vi;, V') describes the flow of utility generated by
the resources for all the possible coalition structures, and captures the presence of
externalities. Accordingly, if the c.s. is {{1},{2},{3}} the flow of utility to player
iis (1 —6)wy; if the c.s. is {{4,j},{k}} the flow of utility to coalition {i,j} and k

4 Alternatively, we can interpret the formation of a coalition as any kind of binding agreement (i.e.,
not necessarily an ownership agreement), in which the coalition act as an agent that is maximizing
the aggregate utility of the coalition members. Although, apparently more general, both approaches
are largely equivalent.



are, respectively, equal to (1 — 6) Vj; and (1 — ) Vi; and finally if the c.s. is { N} the
flow of utility to the grand coalition N is (1 — §) V. Note that the specification above
can capture any positive or negative externalities that the coalition {j, k} creates for
player ¢, whenever v; < V; or v; > V;, respectively. The set of parameters v is also
known as a partition function form (see Thrall and Lucas (1963) and Ray and Vohra
(1999)), or simply a vector v €R°. A characteristic function form corresponds to
a special partition function form where v; = V;, and thus there are no externalities
(v €RT).

Without any loss of generality we consider only O-normalized partition functions
which corresponds to v; = 0. Furthermore, all partition functions considered are
weakly superadditive, which corresponds to V; + Vj, < V for all distinct 4, 7, and
k and V > 0. Note that this assumption simply means that the grand coalition is
(weakly) efficient.

We model negotiations as an infinite horizon non-cooperative game with complete
information, utilizing the partition function as the basic underlying structure. The
negotiation game evolves with players making offers (to acquire the resources of other
players) followed by players that have received offers accepting or rejecting the offers,
as in Rubinstein (1982). However, unlike most models on non-cooperative bargaining,
we allow for a richer set of offers that includes both conditional and unconditional
offers.

Specifically, the strategy set of i’s offers includes the following types of offers: (1)
Offers to only one player, such as an offer to buy player j at a price p;. Player
j’s resource is exchanged for the offered amount conditional only on j’s acceptance.
(2) Joint offers to both players, such as an offer to buy both j and k at a price
p; and pg, respectively. The joint offer must also specify the order in which the
players sequentially respond to the offer, and one of the four types of conditions: (i)
conditional on both player j’s and k’s acceptance decisions-that is an offer conditional
on the formation of coalition NN; (ii) conditional only on j’s acceptance decision and
unconditional on k’s acceptance decision—or an offer conditional on the formation of
coalition {7, j }; (iii) conditional only on k’s acceptance decision and unconditional on
j’s acceptance decision—or an offer conditional on the formation of coalition {i, k}; or
(iv) unconditional to acceptances. In particular, if the offer to player j is unconditional
on k’s acceptance decision then if j accepts the offer j’s resource is transferred to i

and j leaves the game with the amount offered, regardless of the response of player



k. If the offer to player j is conditional on k’s acceptance decision, then j leaves
the game with the amount offered in exchange for his resource if and only if both j
and k accept the offer. Proposals can also be behavioral strategies, i.e. probability
distributions over the set of offers.

The coalition bargaining game is the game with the following extensive form: At
the beginning of each period one of the players belonging to the current coalition
structure is randomly chosen, with equal probability, to be the proposer. If player ¢
is the proposer he then chooses an offer from his strategy set, and players receiving
the offer respond in the order specified, either accepting or rejecting the offer. An
exchange of ownership of resources takes place according to the responses of the offer
and the precise conditions attached to it (see previous paragraph). This defines a
new coalition structure, and the game is repeated, after a lapse of one period of time,
with a new proposer being randomly chosen as described.

Our notion of equilibrium is stationary subgame perfect Nash equilibrium (SPE). A
strategy profile is SPE if it is a subgame perfect Nash equilibrium and the strategies
are such that the choice at each stage of the game depends only on the current
coalition structure and the current proposer, but neither on the history of the game

nor on calendar time.

3. THE COALITIONAL BARGAINING VALUE: THE UNIQUE
EQUILIBRIUM

The analysis of three-player coalitional bargaining games reduce to the well-known
two-player bargaining game of Rubinstein (1982) and Stahl (1972) after the formation
of a pairwise coalition. Suppose that we are at the coalition structure {{i},{j, k}},
where player ¢ and coalition {7, k} are in a bilateral bargaining game. It is a well-
known result (e.g., see Osborne and Rubinstein (1990) and Sutton (1986)) that the
bilateral bargaining game has a unique stationary subgame perfect equilibrium, in
which the two players with reservation values V; and Vj;, propose to form the grand
coalition splitting by half the surplus V' — V; — Vj,. Thus in the subgame starting
with a coalition structure {{i},{j,k}}, the expected equilibrium payoffs of player i



and coalition {j, k} are, respectively, equal to
1 1

In this unique equilibrium whenever coalition {7, k} or player ¢ are chosen to propose
(which happens with probability %) they propose to form the grand coalition offering,

respectively, X; and X, to acquire resources ¢ and {j, k} where

It remains to determine what are the equilibrium strategies at the initial stage
of the game when there are three players and the c.s. is {{1},{2},{3}}. Consider
any SPE and let the expected equilibrium outcome of player i (before the choice
of proposer) be equal to ¢; for all i € N. Throughout the paper the stationarity
assumption is used in a crucial way. At stage {{1},{2},{3}}, player i reasons that
upon his rejection of an offer his payoff is either 6¢, or X;, depending on whether the
coalition structure in the next stage is, respectively, {{1},{2},{3}} or {{i}.{j, k}}.

Let us develop some intuition for what are the offers that are proposed in equilib-
rium. We show (see Lemma 1 in the Appendix) that the maximum expected utility

that player ¢ can achieve choosing any offer in his strategy set is
max {V — 6¢; — 6¢,V — X; — 8¢,V — 8¢, — Xy} . (3)

Player i’s best proposing strategy depends on what is the maximum value of expres-
sion (3), as we now argue.

Consider first the case where the maximum of (3) is V' —6¢,;—6¢y,, which, naturally,
is equivalent to X; > 6¢; and Xy > 6¢;. Then the best response strategy for proposer
i is to offer 6¢; to j and 6@, to k conditional on their joint acceptance (the order
of response is not important) and it is a best response to players j and k to accept
such offer. Note that it is important for player ¢ to make the offer conditional on
the acceptance of both j and k, because if the offer where, say unconditional on j’s
acceptance, then j would be better off rejecting the offer which yields him X; > 6¢;
whenever k accepts the offer.

In the second case, consider that the maximum of (3) is V' — X; — 6¢,, which is



equivalent to X; < 6¢; and X; — 6¢; < X — 5¢,.5 Then the best response strategy
for proposer i is to offer X; to j and 6¢, to k conditional only on £’s acceptance
(the order of response is also not important) and it is a best response to players j
and k to accept such offer. Note that now it is important for player ¢ to make the
offer unconditional on j’s acceptance because otherwise j would reject the offer since
Xj < 6¢;. The strategy above is not the only best response strategy, though. It is also
a best response to player i to offer X, to j and 6¢, to k unconditional to acceptances,
with k& responding first followed by j. We point out that an unconditional offer with
a reversed order of response may not be optimal for player i : after j’s acceptance it
is a best response to player k to reject the offer and get X, rather than 6¢,, whenever
Xk > 0¢y,, which would lead to a lower payoft than V' — X, — 0¢,, for player <.

We remark that the ability to use behavioral strategies is important, and we will
see later on that there may not exist pure strategy equilibria (see Example 2). Observe
that even though there may be several offers that are best response, any choice of
strategy from the best-response set yields the same equilibrium outcome in all but
one important case: Whenever X; —6¢; = Xy — ¢, < 0 and player ¢ is the proposer,
the probability weights that player ¢ places on each of his best response strategies
determines the payoft of players j and k. This is so because if ¢ offers X; to j and
8¢y, to k conditional on {7, k} then j and k’s payoff are respectively X; and 6¢,; and
alternatively, if i offers 6¢; to j and X} to k conditional on {i,j} then j and k’s
payoff are respectively 6¢; and Xj. Since X; < ¢, player j’s payoff is monotonically
increasing in the probability that i puts on the latter offer (and the opposite holds
for k).

Naturally, in order for ¢, to be the expected outcome of an stationary subgame
perfect Nash equilibrium, it must be the case that the system of equations

¢ == (61 + &)+ ¢f) (4)

W =

hold, where ¢g’ is the expected equilibrium outcome of player i given that player j
has been chosen to be the proposer since all players can be chosen to propose with
probability equal to %

In Lemma 2 (see Appendix), using the system of equations (4), we derive explicit

formulas of all possible SPE payoffs, showing that SPE payoffs are linear functions

5The case where the maximum is V — 0¢; — X, is similar.
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of the parameters of the game within certain convex conical regions. Roughly, these
convex conical regions are given by inequality constraints, such as the ones considered
in the previous paragraphs, and within each region proposers’ best response strategies
have similar conditionality requirements.

A key result of this paper is that, surprisingly, the uniqueness result of two-player

bargaining games also extends to three-player coalitional bargaining games.

THEOREM 1: There exists a unique SPE outcome ¢ (v, ) for all three-player coali-
tional bargaining games (v, 6). This outcome is Pareto efficient, is a continuous func-
tion of (v,8), and is a piecewise linear function of the game v, where the linearity

Tegz'ons are COnvexr cones.

The uniqueness proof draws on concepts of convex geometry (see Ziegler (1994))
and is based on Lemmas 2 and 3. Lemma 3, by repeatedly applying the separation
hyperplane theorem, shows that the conical regions are disjoint (more precisely they
intersect only at common faces), which implies the uniqueness result.

The Pareto efficiency result is also surprising given that Chartterjee et al. (1993),
Seidmann and Winter (1998), Okada (1996), and Ray and Vohra (1999) show that
equilibria are inefficient except for very special types of games. The main reason
why efficiency is attained in this model is because we allow for conditional and un-
conditional offers, while in the literature only conditional offers are permitted. The
intuition is that players are better off proposing to form the grand coalition condi-
tional on the formation of a pairwise coalition, rather than proposing to form an
inefficient pairwise coalition. Thus, with conditional and unconditional offers, there
are no delays in the formation of the grand coalition.

Of particular interest is the limit stationary subgame perfect equilibrium as the
time interval between proposals becomes arbitrarily small, or the discount rate ¢
converges to one. The limit linearity regions and the limit equilibrium outcome have
a particular simple and intuitive formula that can be easily obtained by taking the
limit when 6 — 1 of the equilibrium payoft expressions obtained in the proof of

Theorem 1. The limit equilibrium outcome defines the coalitional bargaining value
(CBV) of the game.
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THEOREM 2: (Coalitional bargaining value) The limit stationary subgame perfect
Nash equilibrium outcome of all 0-normalized games v (i.e., v; = 0) is given by
(where Vij = Vi; — Vi for all distinct i, j, and k in N ):

Case I : valg <Y V<Y and Vi < % then

3 — 39
O, = % for all 4;
Case II(Z]) : val] 2 %, szk +VU S ‘/, and QV]].C +VU S V' then
1 — 1 —
bi=0;=17 (V+Vy), and ¢ = 5 (V=Vy);

Case ITI(i) : If Vip+ Vi + Vo <V, 2V —}-Vz-j >V, and 2727 +Vie >V then

(V - Vm) 3 and ¢l€ = (V - VZJ) 3

DO | =
N —

1 — —
¢i:§(vik+vij>; ¢; =

Case IV : If Vig + Vig+ Vs >V then
1 = = = .
¢; = 5 (2V =2V + Vi + Vi)  for alli.

Each of the cases above defines a convex conical region, and there are a total of eight
regions when all permutations are included. Moreover, any given game belongs to the

interior of only one of the eight regions.

Several remarks are warranted. As we pointed out before, the formation of coali-
tions may impose externalities on the non-members: in a partition function game
coalition {i, j} creates an externality worth V}, for player k. The results in this section
suggests that it is convenient to measure the strength (or worth) of coalition {i,j} in
a partition function game by V;; = V;; — Vj, because it captures not only how much
value {7, j} creates but also how much negative externality it imposes on k.5

Intuitively, region I above corresponds to the case where all pairwise coalitions

6Note that the expressions for ®; and ®;;, in terms of _jk are:

(V+Vik). (5)

N =

CI)Z' = (V —ij) and (I)jk =

N —

11



do not create much value (where the value of the coalition is measured by V).
Region II(ij) corresponds to the case where pairwise coalition {7,j} is the only
pairwise coalition that creates significant value. Region I11(7) corresponds to the case
where the pairwise coalitions including 7 are the only pairwise coalitions that create
significant value. Finally, region IV corresponds to the case where the aggregate
value of all coalitions is greater than the value of the grand coalition.

Of course all results above also apply to characteristic function games (which cor-
respond to games where V; = 0, for all i € {1,2,3}). All formulas for the characteristic
function case are obtained by simply making V; = 0 and Vz-j = Vj; in all expressions.

Theorem 2 establishes a natural connection between the coalitional bargaining
value and classical cooperative game theory concepts (developed for characteristic
function games), such as the Nash Bargaining Solution, the Shapley value, and the
nucleolus. More specifically, we will see that for games that satisfy V;; < % (region
I) the CBV coincides with the Nash Bargaining Solution, for games that satisfy
Via + Vis + Vo3 < V (regions I, I1, or III) the CBV coincides with the nucleolus,
and for games that satisfy Vis + Vi3 + Vog > V (region IV') the CBV coincides with
the Shapley value.

However, the advantage of the non-cooperative or strategic approach vis a vis the
cooperative approach is that it enables us to understand precisely how players achieve
their equilibrium value since this information is embedded in the strategies used by
players. The limit equilibrium strategies used by players within each of the eight
regions can be also easily obtained by taking the limit when 6 — 1 of the expressions

for the players’ strategies obtained in the proof of Theorem 1.
THEOREM 3: The limit SPE strategies for all 0-normalized games v are given by:
If v € I then player i offers ¢; to j and ¢, to k conditional on N

If v € II(12) (the other two cases are symmetric) then 1 offers ¢, to 2 and P3 to
3 conditional on {1,2} (2’s offer is similar to 1’s and is also conditional on {1,2}),
and 3 offers ¢, to 1 and ¢, to 2 conditional on N;

If v € III(1) (the other two cases are symmetric) then 1 offers ¢, to 2 and P3 to

3 conditional on {1,2} with probability o1 (12) = ¢ (%), and offers ®y to
1 13— 5
Vi ¥
2 and ¢4 to 3 conditional on {1,3} with probability o1 (13) = ¢ (Vvli#w) , and
12+Vi3—55-
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Jj =2,3 offers ¢, to 1 and @y to k conditional on {1,5}, where the function ¢ (x) is
respectively, equal to 1, z, or 0 if x > 1, x € [0,1], or z < 0;

If v € IV then playeri offers ¢; to j and ®y to k conditional on {i, j} with probability
0; (i7), such that the overall probability that any of the three offers conditional on
{i,5} are chosen is equal to 5 (i.c., 5 (05 (ij) + 0, (if)) = 3 ).

The strategies used in each region have an intuitive interpretation, that serves to
enhance our understanding of the associated cooperative solution concepts. In region
I, the threat of forming a pairwise coalition is not credible and would only benefit the
player left out because no pairwise coalitions create much value (accordingly, no offers
made are conditional on the formation of a pairwise coalition or are unconditional to
acceptances). In region I1(ij), players ¢ and j condition their offers on the formation
of coalition {i,j}, because the pairwise coalition {i,j} is the only pairwise coalition
that creates some significant value. In region I71(i), players j and k condition their
offers on the formation of, respectively, {i,j} or {i,k} because only the pairwise
coalitions including player ¢ have some significant strength. Note that, as is intuitive,
the weight that player i puts on the coalition {7, 5} is monotonically increasing in V;,
the value created by coalition {i,7}. Finally, in region IV all pairwise coalitions are
equally likely to receive a conditional offer.

In the next section we further explore the economics of Theorems 2 and 3 and

also provide several illustrative examples.

4. THE ECONOMICS OF NEGOTIATIONS AND THE COALITIONAL
BARGAINING VALUE

4.1. The Nash Bargaining Solution

The Nash bargaining solution is a classical solution concept for n-person pure (or
unanimous) bargaining games. In pure bargaining games the cooperation of all players
is needed to achieve gains from trade, otherwise all players get their reservation value.
An immediate corollary of Theorem 2, following from Case I, is that the coalitional
bargaining value coincides with the Nash bargaining solution for three-person pure

bargaining games. Moreover, the Nash bargaining solution is the appropriate solution

13



concept for a more general class of multilateral bargaining problems where all three

resources are ‘more or less’ essential.

EXAMPLE 1: Multilateral bargaining games: Consider the bargaining game v , where
v, =V, =0,V; < % for all pairs {i,j}, and V' = 1, and players are very patient (6

close to one).

Note that this multilateral bargaining game is more general than a pure bargaining
game, in which v; = V; = 0, V;; = 0, and V' = 1. According to Theorem 2 the
bargaining value of the multilateral bargaining game is ¢, = %, which is the Nash
bargaining solution of the pure bargaining game. This generalizes the Nash bargaining
solution as the appropriate solution concept for games where all coalitions {i,j} can
achieve a value Vj; less than or equal to % of the grand coalition gains.

It is worth explaining the intuition of this result. The threat of any pair of players
i and j to form coalition {i,j} is not credible because the most the coalition {3, j}
can get, alienating player k, is ®;; = % (1+Vy) < %, which is less than %, the amount
they can get by agreeing to split the dollar equally. In other words, the ability of
players to demand more than an equal split of the dollar by threatening to form a
pairwise coalition is an outside option that is not credible (see Sutton (1986) and
Osborne and Rubinstein (1990)). The coalitional bargaining value prediction has an
interesting comparative statics implication: the expected outcome of players should be
insensitive to changes in the values V;; of pairwise coalitions, as long as the condition

Vij < % is maintained.

4.2. The Shapley Value and the Core

We first provide a more general definition of the Shapley value that extends the con-

cept to games in partition function. See Myerson (1979) for an alternative definition

of the Shapley value for partition function games.”

"According to Myerson (1979) the Shapley value of player i in a three-player 0-normalized par-
tition function is:

Sh; (v) = = (2(V — Vji,) +4V; — 2V; — 2V, + Vij + Vig,) .

=
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DEFINITION 1: Let vg (7) be a game in partition function. Define the marginal con-
tribution of player ¢ to the coalition S, i ¢ S C N,asm (S,7) = vsu; ({SUL, N\(SU)})—
vs ({S, N\S}) . Also, let 6 € II denote any permutation of the players, and let S (6, 1)
denote the coalition of players that come before player ¢ in the ordering 6. The Shapley

value of player i is defined as

the average marginal contribution of player ¢ to his predecessors.

Naturally, the definition above coincides with the standard definition of the Shap-
ley value for games in characteristic function. It can also be easily seen that the

Shapley value for three-player partition function games is explicitly given by®

Shi(v):é(2V—2(vjk—vz-)+(wj—vj)+(wk—%)), (6)

which is also equivalent to

Shi(v):q)i—k% <V—Z¢j>.

Another immediate corollary of Theorem 2, following from Case IV, is that the

coalitional bargaining value coincides with the Shapley value whenever condition
(Viz = V3) + (Vis = Vo) + (Va3 — V1) 2V, (7)

is satisfied (note that this condition is also equivalent to ®; + ®5 + $5 < V).

In equilibrium, when condition (7) holds, a proposer i randomly chooses a player,
say j, and offers him his Shapley value, conditional on forming the pairwise coalition
{i,7}, and offers player k only ®, < Shy (v). Note that player i’s payoff is greater
than his Shapley value by % (V — Z?Zl <I>l) > 0, and player k’s payoff is smaller than

8In two of the six permutations player i is the last, and his marginal contribution is thus V — Vik;
in two of the permutations he is the first player, and his marginal contribution is thus V;; in one
permutation he comes second, just after player j, and his marginal contribution is thus V;; — Vj;
and in one permutation he comes second, just after player k£, and his marginal contribution is thus
Vik = V.
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his Shapley value by the same amount. Therefore, there is an advantage from being
the proposer and a disadvantage from being excluded from a pairwise coalition, and
the Shapley value arises as the equilibrium in situations where players are willing to
form all pairwise coalitions. This property is consistent with Gul (1989) obtaining
the Shapley value as the equilibrium outcome of his model, because in his framework
any two pairs of players are equally likely to meet and form a coalition.

It is also worth pointing out the relationship between the coalition bargaining
value and the core.? It is straightforward that the core of a three-player superadditive

characteristic function game is non-empty if and only if
Vig + Vig + Vag < 2V. (8)

Therefore, we conclude that the Shapley value is the coalitional bargaining value of all
games with an empty core (because whenever the core is empty condition (7) holds).

Interestingly, we will see that even when the core is non-empty, the coalitional
bargaining value may not belong to the core (see Example 2 and the discussion that
follows). However, as we show in Proposition 4 below, this may only happen for games
that satisfy condition V' < Vis + Vig + Vo3 < 2V, and, whenever V' < Vis + Vi3 + Vag,
the coalitional bargaining value does belong to the core.

We finalize this section with the analysis of several well-known games where the

Shapley value arises in equilibrium.

EXAMPLE 2: One-seller and two-buyer market game: Consider the negotiation game
(v,0) where v; = V; =0, Vig = vy =1, Vig = vp, Vo3 = 0, and V = vy = 1, with
vy < vy = 1. In this game player 1 is the seller, player 2 is the high valuation buyer,

and player 3 is the low valuation buyer, and all player are very patient (6 close to 1).

In general we can readily tell when the bargaining value is the Shapley value by
inspecting whether condition (7) is satisfied or not. By Theorem 2 we have that the
bargaining value is the Shapley value

Vg VL . Vg — v, VL, 1 1 (%

0= L+ gy = T T Sy — v, and gy =

because condition (7) is satisfied (vg +vp =14 vy > 1).

9By definition a payoff vector ¢; belongs to the core of a characteristic function game if and only
if Y ey =vnvand ), op; > vg forall S C N.
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This solution generalizes the solution of the one-seller two-buyer market game in
Osborne and Rubinstein (1990) when players are allowed to use contracts and resell
the resource. It is instructive to write down the equilibrium strategies of the game

in the context of Osborne and Rubinstein’s interpretation. Say that A = %vL =

% (V — Z?Zl <I>j) . The one-seller two-buyer game is an example of a game that has
no equilibrium in pure strategy, and where the behavioral strategies are as follows:
buyer 2 offers to buy the seller’s resource for ¢; — A and pays buyer 3 ¢; = A to
leave the market (with probability ps), and offers to buy the seller’s resource for ¢,
(with probability 1 — ps); buyer 2’s payoff is ¢, + A. Buyer 3 offers to buy the seller’s
resource for ¢; — A and resell it to buyer 2 for ¢, + A (with probability ps), and
offers to buy the seller’s resource for ¢, and resell it to buyer 2 for ¢, + 2A (with
probability 1 — p3); buyer 3’s payoff is 2A. The seller offers to sell his resource to
buyer 3 for ¢, + A, who then resell the resource to buyer 2 for ¢, (with probability
p1), and offers to sell his resource to buyer 2 for ¢, + A (with probability 1 — p;); the
seller’s payoff is ¢; + A.

Note that if the valuation of the buyers are the same vy = v;, = 1 then the only
point in the core of the market game is (1,0,0), where the seller extracts all the

surplus from the two buyers. Thus the coalitional bargaining value, which is equal to
411
(67 676
Are the predictions of the coalitional bargaining value reasonable? Shouldn’t we

) , does not belong to the core.

expect competition between the two buyers to drive the good’s price to 1, as the core
predicts? The main reason why the seller can’t extract the entire surplus from the
buyers is that both buyers have the option of forming a cartel to bid for the good,
and then buy it at a very low price (0.5), rather than initiating a bidding war. The
seller knows about that all to well, and rather than auctioning the good, the seller
prefers to negotiate with one buyer an intermediate price (between 0.5 and 1), leaving
the second buyer with nothing. Because all agreements are binding after a deal is
sealed (i.e, either a buyers’ cartel is formed or the good is sold) there is no way for the
player left out to undue the deal enticing one of the players with a slightly better offer.
In summary, we believe that the expected outcome of the one-seller and two-buyer

market game should be very different than the core’s prediction.

EXAMPLE 3: Three-person majority voting game: In this game V;; = V = 1 and
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Note that this game satisfies condition (7) because (Vio —V3) + (Viz — Vo) +
(Vo3 — Vi) = 3 > V = 1 and thus the bargaining value coincides with the Shap-

ley value, which is just an equal split of the dollar, and the core is empty.

EXAMPLE 4: Three-person zero-sum game: In this game v; =0, Vi, = —V; = ¢; > 0,
and V = 0.

This game also satisfies condition (7) because (V1o — V3)+(Vis — Vo)+(Vos — V1) =
2(c1 4+ 2+ ¢3) > 0, and thus the bargaining value also coincides with the Shapley

value (and the core is empty) which is

(61 + Co + 03)
3

(61 + Co + 03)

¢ =-—c1+ 3

Interestingly, this solution coincides with the solution proposed by von Neumann and

Morgenstern (1944) for three-person zero-sum games.

4.3. The Nucleolus: Natural Coalitions and Pivotal Players

We have seen that the Nash bargaining is the equilibrium outcome when players
are not willing to form any pairwise coalition, and that the Shapley value is the
equilibrium outcome when players are willing to form all pairwise coalitions. A novel
element of our theory is that neither the Nash bargaining solution nor the Shapley
value seems to be the right solution concept for a broad class of games: those satisfying
the conditions of cases I1(ij) and I11(i) of Theorem 2.

Our next result shows that the outcome of the coalitional bargaining game in these
two regions coincides with the nucleolus for characteristic function games. We recall
that Schmeidler (1969) proved that the nucleolus always exists and is a unique point
belonging to the core of the game, whenever the core is non-empty. Kohlberg (1971)
then showed that the nucleolus is a piecewise linear function of the characteristic
function of the game, and Brune (1983) computed the nucleolus with its regions of

linearity for three-person games.'® Comparing the formula for the nucleolus with the

10A ccording to Brune (1983) the nucleolus for a three-person superadditive game satisfying V;o >
Vig > Vag is:
IfVis < % then ¢ = (%’ %’ %)7
If Vig > % and Vo + 2 13 < V then d) _ (thVlz’ V+4V127 V72V12),
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formula for the coalitional bargaining value yields the following proposition.

PROPOSITION 4: If v is a 0-normalized superadditive characteristic function game
satisfying Vis + Vig + Vog < V' then the coalitional bargaining value coincides with
the nucleolus, and belongs to the core. Otherwise, if Vio + Vis 4+ Vaog >V holds then
the coalitional bargaining value coincides with the Shapley value, is distinct from the

nucleolus, and may not belong to the core.

While the nucleolus is a concept that is mathematical very attractive and simple,
economists have had difficulties in developing a motivation for it. Using the result
that the nucleolus coincides with the CBV in the regions /1 and /I (as well as [)
we provide a new economic interpretation for the nucleolus using outside options.

First, for games that satisfy the conditions of case II(ij) there exists a pair of
players {i,j} (natural partners) that are willing to form a pairwise coalition. Ac-

cording to Theorem 2, the outcome of negotiations when 7 and j are natural partners

is ¢ = P, ¢, = ¢; = q;” , whenever case I1(ij) holds, which one can easily see is

equivalent to

P < — Pip < @, + &, and Py < @ + @y,

w| =

(these inequalities can be verified by substituting expressions (1) for ®; and ®,;). The
intuition for the result now follows. Note first that the proposed solution is consistent,
with only the pairwise coalition {7, j} being proposed to form: say that the coalition
{i, k} forms then the payoff for the coalition is ®; and the payoff of the player left
out is ®;. But since @, < ¢, + ¢, then the coalition {7, k} is worse off (with respect
to the proposed equilibrium). The payoffs of the players i and j, ¢; = ¢, = %, are
also consistent with the fact that only the pairwise coalition {7, j} may form: players
i and j bargain over ®,; using as disagreement points their status quo values if they
do not reach an agreement which are equal to v; = v; = 0.

Second, for games that satisfy the conditions of case I1I(i) there is one pivotal
player 1 that is included in all pairwise coalitions that are proposed, but the pairwise

coalition between the non-pivotal players is never proposed. According to Theorem

If Vip + 2Vos <V and Vi +2Viz > V then ¢ = (Vztlis V=l Volio),
If —Vig + 2(‘/13 + ‘/23) > V then q') (V+V12+V15 2Voy V+Vlz+;/zs 2Vi; V+V15+;/za 2Vu)
If Vig+2Vas > V and —Vig +2(Vig+ Vag) < V then ¢ — (VE2rtVia=2 Va2VortVip=2Via V=Via)
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2, the outcome of negotiations when player i is pivotal is ¢, =V — &; — &y, ¢, = @y,
¢, = Py, whenever case 111(i) holds, which one can easily see is equivalent to

D D

Q)jk§¢j+®k,¢j§ 5 3 andq)kg 5 .

The intuition for this result is that players ;7 and k& cannot demand a higher payoff
than ®; and ®;, from player ¢ by threatening to form the coalition {j, k} because they
would be worse off pursuing this strategy as ®;, < ®; + ®,. Also, note that players
j and k are not willing to accept any offer lower than ®; and ®; because they can
guarantee this amount by credibly holding out. This is so because if 7 holds out then
1 would successfully bargain with &k to form a coalition; k’s gain are % > @y, and
thus k£ does not want to hold out when j holds out.

It is worth comparing the predictions of the coalitional bargaining value, the
Nash bargaining solution, and the Shapley value in situations where there are natural

coalitions and pivotal players.

COROLLARY 5: The Nash bargaining and the Shapley value are systematically biased
with respect to the coalitional bargaining value in the following ways:

(1) Whenever {i,j} forms a natural coalition then ¢; > %, ¢; > %, and % > ¢ >
(2) Whenever player i is a pivotal player then % < ¢; < Sh; (v),
and % > ¢, > Shy (v).

v
)

wl<

> ¢j hj (V)7

As we expected the players 7 and 7 when forming a natural coalition are able to
strengthen their bargaining position and get more than their Nash bargaining value
(the opposite happening with the player left out). Interestingly, the Shapley value
underestimates the equilibrium outcome of player k. In the situation where i is a
pivotal player then player ¢ gets more than the Nash bargaining solution, but less
then the Shapley value, and the opposite happens with players j and k.

A better understanding of negotiations can be grasped by analyzing more closely
two examples, each one illustrating one of the two new situations. First, we provide
an example of an oligopolistic industry where there are gains from merging, in which
there are two natural merger partners. Then we provide an example of formation of
labor unions where unions are better off bargaining separately with the firm rather

than forming a larger union to collectively bargain for wages.
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EXAMPLE 5: Oligopolistic industries and mergers and acquisitions: Consider the
game v;, = V; =0,V =1, Vi = vy, Vig = vg,, Vos = vr, where vy € [%,1}
and vy, <wvp, < 1‘% < vgy.

In this example there are three firms competing in an industry where there are
gains from consolidation. What are the prices at which firms merge? Are there any
natural merger partners in this industry?

The bargaining value and strategies provide a direct answer to the questions above.
One can easily verify that v € I1(12) and thus the bargaining value is

1+UH
¢1_ 4

14wy 1—wvy

a¢2_ A aand¢3: 9 )

where ¢; = ¢, > ¢s.

It is worth exploring several issues that are behind this solution. Note that the
industry does not consolidate in a random fashion. If firms 1 and 3 merge their
profitability increases by v;,. However, there are still gains from further consolidation
with firm 2. What are the gains for each merging firm? Say that the initial merger
between firms 1 and 3 is irreversible or divesting is too costly to be considered a viable
option. Firm 2 and conglomerate {1,3} will then split the merger gains in a Nash
bargaining way, each getting, respectively, 3 (1 —v;,) and £ (14 v,). Note that the
value of the conglomerate {1,3} is 5 (1 +wv;,) < 1 (3 — vy) = ¢, + ¢3. Therefore, one
can predict that firms 1 and 3 are not going to merge and, by the same reasoning,
one can also rule out a merger between firms 2 and 3.

Consider now a merger between firms 1 and 2. The value of the conglomerate {1, 2}
is equal to 3 (14 vy) and the value of firm 3 is § (1 — vy) (see previous paragraph).
How should the value of the conglomerate {1,2} be split among firms 1 and 2? Firm 2
has an apparent stronger bargaining position than firm 1 because v, < v, and thus
it seems reasonable that firm 2 should receive a higher share of the value than firm
1. However, this intuitive idea is wrong: Firm 2 does not have any credible outside
options other than to merge with firm 1, and thus the Nash bargaining solution is an

equal split of the value of the conglomerate {1,2} .

EXAMPLE 6: Formation of labor unions: In this game v; =V; =0, Vs = v, Vi3 = v,
Vog <1 —2v where v € [%, 1] ,and V = 1. The firm is player 1, and players 2 and 3

are the two unions.
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How much are the firm’s profits and the employee wages? Are the workers better
off forming only one union to collectively bargain for wages?

Since the conditions for player 1 to be pivotal holds, thus the bargaining value is
equal to

1—w 1—w
¢1:’U7¢2:Taa‘nd¢3: 2 )

where ¢; > ¢, = ¢5. Therefore, in equilibrium, the wages are equal to 1—;” for workers

in both unions, and the firm’s profit is v.

1—v
2

the union could just wait until the firm signs a contract with the other union and

Note that the unions are not willing to agree to a wage lower than . Otherwise,
bargain with the firm for a wage equal to half of the extra profits that the union
could create, which results in a wage equal to % (1 —v) . Interestingly, the threat of
forming only one union to bargain for higher wages is not credible. The larger union
can bargain for a total wage package equal to half of the surplus that it creates, which
is equal to % (14 Va3) < 1 —v. Therefore, collective bargaining results in a wage per
worker lower than the amount the firm is willing to offer to employees in the first
place. This stylized example illustrates that the theory of negotiations in this paper

can bring new insights to collective bargaining and unionization models.

5. CONCLUSIONS

This paper introduces a new concept of value for coalition bargaining games—the
coalitional bargaining value. The coalitional bargaining value is Pareto efficient, and is
the unique stationary subgame perfect Nash equilibrium of a dynamic non-cooperative
game where there are externalities, contracts can be renegotiated, and players are
allowed to make conditional or unconditional offers while negotiating.

The theory developed in the paper provides a unified framework that selects an
economically intuitive solution for all three-player coalitional bargaining games. Also,
we propose a simple way to deal with externalities: add to the value of a pairwise
coalition the amount of negative externalities (or subtract the amount of positive
externalities) that it creates for the excluded player. Using this corrected measure
of value, we show that the coalitional bargaining value can either be the Nash bar-

gaining solution, in the case where the value of all pairwise coalition is less than a
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third of the grand coalition value; the Shapley value, in the case where the sum of the
values created by all pairwise coalitions is greater than the grand coalition value; or
the nucleolus, in the case where only the ‘natural coalition’ among two ‘natural part-
ners’ creates significant value, and in the case where only the two pairwise coalitions
including a ‘pivotal player’ create significant value.

Although we restricted our analysis to three-player games, the framework of this
paper is suitable to generalizations to n-player coalitional bargaining games (see
Gomes (2001)). However, it remains an open issue whether the uniqueness of station-
ary subgame perfect solutions hold for n-player games, and what is the connection

with cooperative game theory concepts in more general settings.
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APPENDIX

LEMMA 1: Any SPE of a coalitional bargaining game (v, ) satisfy the following conditions
below:

(1) If Xj > 6¢; and Xy > b¢y, then =V — 6 — 6y, (/);'- = 0¢;, and Bh = 6by;

(2) If Xj < 6¢; and Xj —6¢; < Xy — 0¢y, then P =V — 6y, - X, qﬁg = Xj, and By = 6bp;
(8) If Xj — 6¢; = Xy, — ¢y, < 0 then P =V — Xj — 6¢y, qS;- = w; Xj + (1 —p;)6¢; and
¢y, = (1 — p;) Xi + p;60, where p; € [0,1] is the probability that i puts on the offer X; to
J and 8¢y, to k conditional only on k’s acceptance, and (1 — p;) is the probability that i puts
on the offer 6¢; to j and Xy to k conditional only on j’s acceptance;

(4) The system of equations hold:
Lk
b =5 (#+01 +9}). ©)

where qSé- 18 the expected equilibrium outcome of player j given that player i has been chosen
to be the proposer.

Conversely, if there exists a set of numbers (/)g and ¢; for i,j € {1,2,3} satisfying all
conditions above, then there exists an SPE of the coalitional bargaining game (v, §) with an

equilibrium outcome equal to ¢; and (/)3

PrROOF OF LEMMA 1: Suppose that we have an SPE of the game (v, ). The best

acceptance strategy for players j and k for any proposed offer is as follows:
(i) If i offers p; to player j then j's best response is to accept if and only if p; > 6¢;.

(ii) If ¢ offers p; to j and py, to k conditional on their joint acceptance then j and k’s best
response is to accept if and only if p; > 6¢; and px > é¢y, regardless of the order of

response.

(iii) If 7 offers p; to j unconditional on k’s acceptance, and offer pj, to k conditional on j’s
acceptance then the best responses are as follows. Player j’s best response, regardless
of whether he is the first or last to respond, is to accept if and only if p; > é¢;. Player
k’s best response, also independent of the order of response, is to accept if and only
if pp > Xg.

Note that the strategy above is a best response because if j accepts the offer and &
rejects the offer then &’s payoff is equal to X, and if j rejects the offer then k’s acceptance

decision is irrelevant for his payoff.
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(iv) If ¢ offers p; to j unconditional on k’s acceptance and offers py to k£ unconditional on
j’s acceptance then the best responses are as follows, where the order of response is
relevant for the strategies that each player chooses. Say that j is the first player to
respond followed by k. Player k’s best response is to accept if and only if pr > X
and player j has previously accepted the offer, or accept if py > d¢, and player j
has previously rejected the offer. Player j’s best response is to accept if and only if
pj = Xj and pg > 6¢y, or accept if p; > 6¢; and pr < 6.

This strategy is indeed a best response. If player j rejects he knows that player k’s best
response is to accept if py, > 6¢,,, in which case j gets a payoff of X;. Therefore, player j’s
best response is to accept any p; > X;, whenever py > 6¢y. On the other hand, if py, < é¢,
player j knows that the best response of player £ is to reject any offer py < d¢,, if player j
has previously rejected the offer, in which case j’s payoff is equal to 6¢;. Therefore, player
J’s best response is to accept if and only if p; > §¢;, whenever py < 6¢y,.

Given that we already know how players respond to offers, let us determine the best
proposal strategy. Obviously, if ¢ proposes an offer that is unacceptable to all other players
(or if he chooses not to propose), then his payoff is equal to §¢,.

(i) If i proposes an offer only to player j, then the highest payoff i can get is X;; — 6¢,.
This is so because in the continuation game the equilibrium payoff of the coalition

{i,7} is Xi; and the minimum that player j accepts is p; = 6¢;.

(ii) If i proposes an offer to both players j and k conditional on their joint acceptance,
then the highest payoff ¢ can get is V' — §¢; — 6¢;. This is immediately true because
the minimum that players j and k accept is p; = 6¢; and px = 6¢y,, respectively.

(iii) If ¢ proposes an offer both to players j and k conditional on j accepting but uncon-
ditional on k accepting, then the highest payoff i can get is V — §¢; — Xj. This is an
immediate implication of the best response strategies of j and k, because players j

and k accept a minimum offer of p; = é¢; and py = X, respectively.

(iv) If ¢ proposes an offer to both players j and k& unconditional on the acceptance of both,

then the highest payoff i can achieve is

max {V — 6¢; — Xi, V — Xj — 8¢y, Xij — 6, Xop — 6y, ¢}, if X < 6y or X < 6,
max{V - Xj - X]C,Xij - 6¢jaXik - (5(/)k, 5@51} y if Xk > (5(]5/€ and Xj > (5(/)]
(10)
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Let us prove this claim. Obviously, player ¢ can achieve X;; —6¢,;, X — ¢y, or 6¢; with
an offer that only one or none of the players accepts. Consider then the best offer that ¢
can make that is acceptable by both j and k. Assume that i chooses player j to be the first
player to respond to the offer. We have seen before that j accepts the offer if and only if
pj = Xj and pg > Oy, or p; > 6¢; and pg < 6¢y, and that player k accepts the offer if and
only if pr > X, if player j has previously accepted the offer, or if player j has previously
rejected the offer, if pr > 6¢,. Therefore, player i can buy players’ j and k resources at
a minimum cost equal to min {Xj + 0, 695 + Xk} if X < ¢y, and equal to X; + Xj,
if Xy > 6¢;, when player j is the first player to respond. But since player i can choose
either j or k to be the first player to respond then he can buy both players’ resources at a
minimum cost equal to min {Xj + 0, 695 + Xk} if Xy < é¢y or X; < 6¢;, and equal to
Xj+ Xy if Xy > ¢y, and X; > 6¢,;, which proves the claim.

We have shown, so far, that player i’s expected utility when chosen to propose, ¢

iy 1S

equal to

But X;j —6¢; <V —6¢; — Xj, (and also X — 6y, <V — 6y, — X), and that the inequality
holds strictly if Vi 4+ Vi; < V holds strictly (similarly we also have that X, — 6¢, <
V —6¢, — Xj). Note first that X;; —6¢; <V — ¢, — Xj, is equivalent to X;; + Xy <V, and

= 6(Xk+ Xij) + (1-0) (Vi + Vi)
= V+(1-08)Vk+Vy),

However, since Vi, + Vj; < V then X;; + Xj <V, and if Vi + Vj; <V then X;; — 6¢; <
V —6¢; — Xj. Obviously, also 6¢; <V — 6¢; — é¢y, and that the inequality holds strictly
if V' > 0 holds strictly, because ¢; + ¢; + ¢, < V.

We thus have that the highest expected utility that player i can achieve, conditional on

being chosen to be the proposer, is equal to
¢y = max {V — 8¢; — 6y, V — 6; — X,V — X — ¢, } . (11)

Using this result and the best acceptance strategies proposed we can easily prove that all
conditions of the lemma are true, which completes the necessary part of the theorem.
We now prove the converse of the theorem. Suppose that we are given payoffs qﬁg

and ¢; for i,j € {1,2,3} satisfying all stated conditions. We claim that the stationary
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strategy profile o of proposals and responses considered above is a stationary subgame
perfect equilibrium. We use the one-stage deviation principle for infinite-horizon games to
prove the claim. This proposition states that in any infinite-horizon game with observed
actions that is continuous at infinity, a strategy profile o is subgame perfect if and only if
there is no player ¢ and strategy o that agrees with o; except at a single stage ¢ of the
game and history h', such that ¢’ is a better response to o_; than ¢; conditional on history
h' being reached (see Fudenberg and Tirole (1991)).

Note first that the game is continuous at infinity: for each player ¢ his utility function
is such that, for any two histories h and I’ such that the restrictions of the histories to
the first ¢ periods coincides, then the payoff of player 4, |u; (h) — u; (h')|, converges to zero
as t converge to infinity. It is immediately clear that the negotiation game is continuous
at infinity because |u; (h) —u; ()| < M (6“‘1 + 62 4. ) = %(5’5"'1, where M >V —
min {0, V;} — min {0, V} }.

The strategy profile o; is such that, by construction, no single deviation o at both
the proposal and response stage can lead to a better response than ¢;. Therefore, by the
one-stage deviation principle, the stationary strategy profile o is a subgame perfect Nash

equilibrium. Q.E.D.

PrROOF OF THEOREM 1: Suppose that ¢, is an SPE outcome. It must then be true
that X; — 6¢,; belongs to at least one of the following cases, where the triple (¢,7,k) € II
belongs to the set of permutations II of the N players:

I:X1—6py >0, Xy— 8¢y >0, and X3 — 8¢5 > 0,
IT(i): Xi —66; <0, Xj —6¢; > 0, and Xy, — ¢y, > 0,
ITT (i,§,k) « Xi — 8¢ < X; — 6; <0, and X, — 8¢y, > 0,
ITI (k) : X; — 6¢; = Xj — 6¢; <0, and X — 6¢py, > 0,
IVy (3,5, k)« Xy — 6¢; < Xj — 8¢ < Xj — by, <0,

IVy (i) : Xi — 6¢; < Xj — 6p; = Xy, — by, <0,

IVs: Xi— 8¢, = Xj — 6¢p; = Xy — 69y, <0,

IV (k) : Xi =8¢y = Xj — 6¢p; < Xp, — 8¢y, < 0.

Define for each triple (i, j, k) the set of eight cases above as
@(Zm% k) = {I>II(Z)71111(Za]a k)aIIIQ(k)>IV1(ZaJa k)aIVQ(Z)aIVE’nIVAL(k)}

The set of all cases is given by Q = ( U) Q(4, 4, k), when we consider all permutations of
i,5,k) €Il
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N. Due to the symmetry of the problem we can concentrate on the analysis of the eight
cases in Q(i, 7, k).

The following lemma is the result of the separate analysis of each case.

LEMMA 2: A payoff ¢ = (¢;) is an SPE equilibrium outcome if and only if there exists
Q € Q(i, g, k), such that the payoff ¢ is equal to

P = % + ®q - w for all games that satisfy the inequalities g - w < 0,

where @ and g are matrices given explicitly below, and w is the linear transformation of

variables,
o
wi:Xi—?VforieN. (12)

PrOOF OF LEMMA 2: We first provide an outline of the steps involved in the proof that
are repeatedly applied to all cases Q.

Necessity part: Assume that ¢; is an SPE outcome. Then there is a case Q) € Q(3, j, k)
such that all inequalities in case ) hold. The conditions in Lemma 1 define explicit ex-
pressions for gbj- as a function of ¢. Substituting these expressions for qﬁé- into the system
of equations (9) and solving for the system yields a unique solution that can be expressed
as ¢ = % + @@ - w. We then substitute this expression for the equilibrium outcome into
the inequality restrictions that define case @, resulting in a system of linear inequalities
Qg -w <0.

Converse part: Suppose that the game v is such that Qg -w <0 and ¢ = % + &g -w for
any case @ € Q(i, j, k). Then, by the converse of Lemma 1, the payoff ¢ is an SPE outcome.

Consider now each of the cases @ € Q(¢, 7, k).

I. X1 —6p, >0, Xo— 8¢y >0, and X3 — S¢h > 0.

The players’ best response strategy yield the following system of equilibrium payoffs,

¢1 =V — ¢y — 83 $y = by b3 = Ocbs
¢l = 6¢1 ¢ =V — 6py — 3 ¢ = ¢
$ = ¢y $3 = 6y ¢ =V — ¢y — 6

where if all the inequalities are strict the unique best response strategy of all players is to
choose the offer to all players conditional on N. The equilibrium payoffs satisfy the system

of equations (9), whose unique solution is ¢; = % for all 7, (define ®; = 0). Moreover, the
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conditions that must be satisfied by the solution are X; — é¢; > 0, which is equivalent to,
w; > 0 for all 1.
I1(i). X; —6¢; <0, Xj —6¢; >0, and X, — ¢y, > 0.

The players’ best response strategy yield the following system of equilibrium payoffs,

475;: :Vf5¢1€—5¢j ' 4/); :5¢j % = by,
o] = X, ¢y =V =8¢ — X; e = 00k
¢£’C:Xi ¢§:6¢j ¢11§:V_5¢j—Xi

where if all the inequalities are strict the unique best response strategy of players j and k is
to choose the offer to all players conditional on {7, k}, and that of player i is to choose the
offer to all players conditional on IN. The equilibrium payoffs satisfy the system of equations

(9), whose unique solution is

5 L 2XitV(a-o)
i 3_6 ’
V- X,

% = 3T
V- X;
¢l€ - 3_6’

which corresponds to ¢ = % + @ - w where

, 2 00
= g—g | 1 00
1.0 0

This solution is an equilibrium if the system of inequalities, X; — 6¢; < 0, X; — ¢, > 0,
and Xy — 0¢, > 0, holds. This system of inequalities corresponds, after simplifications, to

1 0 0 Wi
Qo-w=| -6 —(3-0) 0 w; | <0.
-6 0 —(3—(5) W

IT1 (i, §, k). X; — 8¢y < Xj — 6¢; <0, and Xg — 6¢ > 0.
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The players’ best response strategy yield the following system of equilibrium payoffs

X =U—bup—X; ¢l = X; qﬁk = by,
(/)?ZX@ QS?-:U—(S.%']C—X@ ?C:(ka
oF = X, Pl = b oF =U — bz — X

where if all the inequalities are strict the unique best response strategy of players j and k
is to choose the offer to all players conditional on {j, k}, and that of player i is to choose
the offer to all players conditional on {i,k}. The equilibrium payoffs satisfy the system of

equations (9), whose unique solution is

(1—6)((3—8)U — 3Y;) + (6 — 56) X;

i = 9+62-95 ’
3(1-8)U-X,)+(3-20X;

% = 9+62-96 ’
. (3-20)U—(3—28) X, — X;6

o = 9+ 6296 ’

which corresponds to ¢ = % + @@ - w where

6-55 -3(1-26) 0
—3(1-68) (3-26 0
— (3—26) 5 0

1
d,=- -
“7 9+ 6% 99)

This solution is an equilibrium if the system of inequalities, X; — 6¢; < X; — 6¢; < 0, and
X — 6¢, > 0 holds. This system of inequalities corresponds, after some simplifications, to:
(9+6%—98) Xi, + (36 — 26%) X; + X;6* > (36 —26%) U,
(3 — 5)X] + X;6 < 46U,

9-68)X;-9(1-6) X, > &0,

which is equivalent to

— (36 — 26%) -8 — (946> —9¢) w;
Qp-w= 6 (3—9) 0 wj | <0,
3(1-¢6)  —(3—20) 0 Wi

if we replace the strict inequality (9 —66) X; — 9(1 —8) X; > §°U by a weak inequality.

Note that due to the upper hemi-continuity of the Nash equilibrium correspondence (see
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Fudenberg and Tirole (1991)), if Qg -w < 0 then ¢ = % + @¢ - w is also an SPE outcome.
Iy (k). Xi—6¢; = Xj — 6¢; <0, and Xy — 6¢py, > 0.

The best response strategy of player k is to choose an offer to all players conditional on
{i, k} with probability p € [0,1] and to choose an offer to all players conditional on {j, k}
with probability (1 — p), and that of player j and i to choose, respectively, an offer to all
players conditional on {j, k} and {7, k}. This result in the following system of equilibrium

payofts:

B=V-X;-bt =X, b =80
W= (1—p) Xi +pdp; ¢f =pX;+(1—p)6p; of =V — 86— X;

The equilibrium payoffs satisfy the system of equations (9), whose unique solution is

(3—26) X; + (1 — 68) (26V — 3X;)

% = (6 — 56) ’
 (3-28) X+ (1-6)(20V - 3X,)
¢ = (6 — 56) ’
2=V -Xi— X,
b = 65 :
b, - (96 —9) X; + (9 — 66) X; — 82V
(3X; +3X; —26V)6 ’

which corresponds to ¢ = % + ®¢ - w where
(3-26) -3(1-46) O
-3(1-¢6) (3-25) O
-0 -6 0

®e= 5659

This solution is an equilibrium if the system of inequalities, X; — 6¢; = X; — 6¢; < 0, and
Xy, — 0¢y, > 0, holds (note that the condition X; — 6¢; = X; — 8¢, is already satisfied), and
in addition p € [0,1]. This is equivalent to

6((2—6)V—X¢—Xj> I

6— 56
(3 — 25) Xj + (1 — 5) (2(‘5V —3X2~)
5( 5(6—50) ) i
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and the inequalities arising from the restriction p € [0, 1] are

(96 — 9) X; + (9 — 68) X; — 82V

< 1,

(SX]' +3X; — 26V) 1) -
05— Xi+(0-6)X,—8*V _
(3X; 13X, _26V)0 = U

Note that the first two inequalities can be restated as

S5(2-6V-Xi—X;) < (6-50)X,
3X; +3X;, < 26V

But since 3X; + 3X; — 26V < 0 then the denominator of the conditions imposed on p is

negative and the inequalities are equivalent to

< 8,
9-68)X; —9(1-8)X; < &V

—
©o

|
=]
=
e

|
Ne)
—
—_

|
2
>
A

Therefore, the system of inequalities is equivalent to

(6-58) Xk +6(Xi+X;) > 6(2-96)V,
3X; +3X; < 20V,

9-68)X;—9(1-8)X; < &,

9-68)X;-9(1-6)X; < &V

The upper hemi-continuity of the Nash equilibrium correspondence implies that the same
equilibrium outcome given by the formula above also holds when the second inequality holds
strictly, 3X; + 3X; < 26V. But note that if we add up both of the two last inequalities we
obtain ¢ (3X; + 3X;) < 262V, and therefore the second inequality can be dropped from the

system of inequalities yielding,

-6 -6 — (6 — 59) w;
Qo -w=1| (3-206 -3(1-9) 0 w;j | <0.
-3(1-96) (3—20) 0 Wk

IVi(i,4,k). Xi—6¢; < Xj—6¢; < Xy — ¢y, <0.

This case is similar to case 111 (i, j, k) and has a similar best response strategy. Repeat-

ing the same reasoning we obtain that ¢ = % + ®q - w where Pry, ;i k) = Prrry(,5,k)- This

32



solution is the equilibrium if the system of inequalities, X; —é¢; < X;—06¢; < Xy —0¢;, <0,

holds. This system of inequalities is equivalent to

3(1-96) —(3-26) 0 wi
Qp w -5 —(126-26°—9) —(94+6*—96) | | w; | <O.
§ (3 —26) & (9—95+ &%) Wi

IVa(i). Xi—6¢; < Xj—6¢; = Xp — O¢y, <O.

The best response strategy of player ¢ is to choose an offer to all players conditional
on {i,k} with probability p € [0,1] and to choose an offer to all players conditional on
{i,j} with probability (1 — p), and that of player j and k to choose an offer to all players

conditional on {7, k}. This result in the following system of equilibrium payoffs:

¢ =V = X; =80y &5 =pX;+(1—p)os; ¢ =(1—p)Xi+pis
¢l =X; ¢h =V — X; — 6y P, = by,
PF = X; ok =8¢, PF =V — X; — 86,

The system of equation (9) is

1

Py = g(V—Xj—(S(/)k-i-QXi),
1

¢; = g(pXj+(1_p)5(/)j+V—Xi—597513"’5(/)]')a
1

b = 5(( —p) X + pooy, + 6¢p, +V — X; — 6¢;)

Note that the first and last equation determines the value of ¢;, and ¢; = 651 (6¢ + X i — Xk)
as a function of ¢,,. It remains then only to solve for the values of ¢, and p using the second

and third equations:

S (Spp+X;— X)) = 5 (X;+2—p) (8 +X;— Xi) +V — Xi — 66),

W= | =

op = ((1=p) Xp+ (1 +p) oty +V =X — (6¢p + X;j — Xi)),

collecting all terms in ¢, and p yields:

3
(3= 8) & — Xup +poy + 5 (Xj — Xp) =V = 2X; +2Xp + X; = 0,
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Subtracting the first and second equations cancels all terms in p and gives us the solution
for ¢, :

b — 26V —2X;6 — (3—6) X; + 3Xy
ko (6—0)6 '

The last equation can be rewritten as (¢, — X)p — 3¢, +V +2X;, — X; — X; = 0. Since

0¢, — X > 0 then there is a unique solution for p. We have then found a unique solution:

gb- B (2—6)V—XJ—X/€+4XZ

606
b — 26V — 2X;6 +3X; — (3 — 8) X
7 (6—6)6 ’
b — 26V — 2X;6 — (3 — 6) X, + 33Xy,
B (6—6)6 ’
(-9 —26%+126) Xi + (94 6% — 98) X + X;6° — 62V
b= 5((3—0) Xp+ (3—0) X; — 26V + 2X;0) ’
which corresponds to ¢ = % + @ - w where
. 46 —6 -6
¢Q:m —26 3 —(3-9)

—25 —(3-29) 3

This is the equilibrium of the game if the system of inequalities X; — é¢; < X; — 6¢; =

Xy, — 6y, < 0 holds (note that the condition X; — 6¢; = Xy — ¢, is already satisfied) and
p € [0,1], which is equivalent to:

(3-20)X; + (76 —6) X; + (3—28) Xp > 6%V,

(3—8) X+ (3—08)X; +2X;6 < 28V,
(-9 —26% +126) X + (94 6% — 96) X; + X;6° — 6°V

<1
5((3—6) Xy + (3—8) X; — 28V + 2X,6) -
(=9 — 26" +126) Xp + (9+ 6% — 96) X + X" — 8V 0
5((3—6) Xx + (3—8) X; — 26V + 2X,6) -

But note that the second inequality implies that the denominators in the third and fourth
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inequalities are negative. Therefore the system of inequalities is equivalent to:

(3-28)X; + (76 —6) X; + (3—28) X > &%V,
(3-8 Xp+ (3-08)X;+26X; < 28V,

(126 —26* = 9) X; + (9 + 6° — 90) X + 6°X; < 6%V,
(126 — 26* — 9) X + (94 62— 96) X; + 6°X; < &°V.

The upper hemi-continuity of the Nash equilibrium correspondence implies that the
equilibrium outcome also holds when the second inequality holds strictly, (3 — &) Xy +
(3—06)X; + 26X; < 26V. But note that adding up the last two inequalities we get 6
((3—8) Xy + (3 — 8) X; +26X;) < 26%V and thus the second inequality becomes redun-

dant. Finally, the system of inequalities is equivalent to

—(76—-6)  —(3—20) — (3—26) w;
Qp-w= 52 (126 — 26 —9)  (9+ 6% —9¢) wj | <0.
&° (9+6%—95) (126 —26* —9) W

1Vs. Xi—6¢i:Xj—5¢j:Xk—6¢k<0

The best response strategy of player ¢ is to choose an offer to all players conditional
on {i,k} and {i,j} with probabilities p; and (1 — p;), the strategy of player j is to choose
an offer to all players conditional on {j,k} and {i,j} with probabilities p; and (1 — p;),
and the strategy of player k is to choose an offer to all players conditional on {j, k} and
{i, k} with probabilities py and (1 — pg) . This result in the following system of equilibrium
payoffs:

'¢§:V—Xj—6q5k ¢§-;pin+(1—p¢)6¢j 2:(1—%)){/@ + pid oy,
¢ =piXi+ (1—pj)d¢; ¢ =V —X;—b¢y = (1= pj) X+ pjody
oF =peXi+ (1= pp) 66 &% = (1 — pi) X, + o, dp =V —X;— 66

where p;, p; and p; all belong to the interval [0, 1] . The system of equation (9), implies that
¢; + ¢; + ¢, = V. Imposing the condition 6¢; — X; = 6¢; — X; = d¢y, — X, we immediately

get that there is unique solution equal to

X, 16V —X,—X;— Xy

A 5 |
X, 16V X, - X; - Xy,
= 5t 5 |
X, 18V - X - X - X
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which corresponds to ¢ = % + ®( - w where

1

The restrictions X; — 6¢; = X; — 6¢; = Xy — 0¢, < 0 imply that
6 (s + o5+ o) =6V > X+ Xj + Xy,
which is equivalent to
Xi + X+ X <OV.
We are now interested in solving the system of equations for p;, p;, and py:

V= X —6¢p +pjXi+ (1 —pj) 66; + prpXi + (1 — px) 66 — 3¢; = 0,
piX; + (1 —Pi)5¢j +V = 6¢; — X+ (1 —pr) X; +Pk5¢j - 3¢j =0,
(1 —pi) Xk + pidgy, + (1 — pj) Xi, + o +V — X; — 6¢; — 3¢y, = 0.

After rearranging terms, the system is equivalent to:

(‘5‘7)1' - Xz) (pj +pk) =V- Xj - 5(/)k + 25(/)1' — 3,
(8¢5 — X;) (i — pr) = =66 + 665 + X +V = 3¢; — X,
(60 — Xi) (pi +pj) = —2Xp =V + X; + 60 + 3¢py,,

and substituting the expressions for ¢;, ¢, ¢y, results in:

—8(8V - Xi — X; — Xp) (pj +pr) = 46Xp —5X;6 —3X; — 3Xy + 6X; + 4X;6 — 6V,
(S((SV—Xi—Xj—Xk)(pi—pk) = S(Xk—FZXJ(S—XZ(S—(SXk-f—XZ—ZXJ),
S0V —X; — X; — Xp) (pi +pj) = —T6Xp +2X:6+2X;6 + 6*V + 6X; — 3X; — 3X;.

We can immediately verify that any vector p;, p; and py, is the unique solution of the system
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of linear equations:

(1—6)(3Xy — 6X; + 3X,)
SOV —X; — Xj— Xg)
OV (AXy - 5X, +4X;) (1—6) — (X + X + Xy)
bi = 58V — Xi — X, — Xp) Pk
Pk = Dk

pi = Dpr+

Note that p;, p; and p; all belong to the interval [0, 1] (we must also have X;+X; + X}, <
6V'). This imposes the following six additional inequalities that must hold:

(1—68) (3Xy — 6X; + 3X;)

Pt GV —X, =X, =Xy =
1—-6)(3Xp —6X, +3X;
m+( M3k6g+3)__L
§(6V — X; — Xj — Xy)
8V 4+ (4Xp = 5X; +4X) (1-6) = (X + X; + Xi) - 0
56V — Xi — X, — Xp) Pe= %
8V 4+ (4Xp = 5X; +4X) (1-6) = (Xi + Xj + Xi) -1
56V — Xi — X, — Xp) Peo= %
Pk Z 07
e <1

We use the Fourier-Motzkin elimination method (see Dantzig (1963) and Ziegler (1994))
to eliminate the parameter p; from the above system of inequalities. We first rewrite the

system of inequalities as follows:

(1—6) (3X), — 6X, + 3X;)

PET TSV X - X, - Xp) 0
8V 44X, — 55X +4X5) (1-8) — (Xi + X + Xy) S
Pk 6(5V—X1—X]—X/€) - ’
Pk Z 07
- (1—6)(3Xx — 6X; + 3X;) > -1
§(6 —X; — Xj— Xp)
SV 4+ (4Xy — 5X; +4X,) (1 - 68) — (Xi + X + Xz)
§(6V — X; — Xj — Xp)
—Pk Z _1a

where in the first three inequalities the coefficient of pg is +1 and in the last three inequalities
the coefficient of py is —1. By the Fourier-Motzkin elimination method we can eliminate the

variable pg by adding each of the first three inequalities to each of the last three inequalities.
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Then the system is equivalent to

0>—1,
(1—6)(3Xx — 6X; +3X;) N 82V + (4Xy — 5X; +4X,) (1 - 8) — (Xi + X, + Xp) -
S8V — Xi — X; — Xp) SOV — X; — Xj — Xp) =
(1-6) (3X), —6X; +3X))
SOV -Xi—X;—Xp) —
PV 4 (AXE - 5Xi +4X5) (1-68) — (Xi + X+ Xi)  (1—6) (38X, — 6X; +3X;) _
SOV - X; — X; — Xp) SOV -Xi—X;—Xp) — 7
0>
62V+(4Xk—5X+4X)( )(X¢+Xj+Xk)>_2
SOV — X; — Xj — Xp) - 7
(-0 (38X, —6X; +3X)
SV —Xi—Xj—Xp) —
8V 4 (4Xy — 5X; +4X,) (1 —68) — (Xi + X, + Xx) -

5(6V — Xi — X; — Xp)
0> 1.

Note that the first, fifth, and last inequality are always satisfied, and the remaining six

inequalities can be simplified to:

(3-28)(X; +X;+Xp) —9(1-68)X; < &V,
B-20)(Xi+X;+Xx)—-9(1-8)X; < &V,
(3-28)(Xi+X;+Xi) —9(1—-8) Xy < &%V,
(46 —3)(X; + X; + Xp) +9(1 - 8) X; < &%V,
(46 —3) (X + X; + Xp) +9(1 - 8) X; < &%V,
(46 = 3) (Xi + X; + Xp) +9(1 - 8) X}, < &V

The upper hemi-continuity of the Nash equilibrium correspondence implies that the equi-
librium outcome also holds when the inequality X; + X; + X} < 6V holds strictly. Also,
adding up the first three equations (or the last three) yields X; + X; + X}, < §V. Finally,
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the system of inequalities is equivalent to

46 — 3
46 — 3

(@)
|
ot
sY
N
>
|
w

(76— 6) (3-26) (3—26)
(3-26) (76—6) (3—206)
o0 .| B=2) 3-20) (15-0) i 0
? (6-56) (46—3) (46-3) || 7|~
( ) ( ) ( )
( ) ( ) ( )

i
>
|
w

IVy(k). Xi—6¢; = Xj — 6¢; < Xy, — 6y, < 0.

This case is similar to case I1I3(k) and has a similar best response strategy. Repeating
the same reasoning we obtain that ¢ = % + @ - w where @y, (x) = Pry1,(k)- This solution
is the equilibrium if the system of inequalities, X; —0¢;, = X; — 6¢; < Xy — ¢, < 0, holds.

This system of inequalities is equivalent to

—(46—-3) —(46-3) —(6-50)
o 5 5 (6— 56) -,
VT 30-6) (3-29) 0 “ill=E

(3-26) —3(1-06) 0 ok

%

The results we have just obtained from the analysis of all cases @ € Q(4, j, k) complete
the prove of Lemma 2.

Q.E.D. LEMMA 2

In order to establish the uniqueness of the equilibrium payoffs we must now show that
for any given game v if Qg -w < 0 and Q¢ - w < 0 where @ and @’ are any of the cases in
Q, and w is the linear function of v given by (12) then &g -w = ¢ - w.

We first characterize the set of games v such that {0g-w < 0 and Qg -w < 0. We
obtain this characterization in Lemma 3 using the key representation result from the theory
of polytopes (see Ziegler (1994)): a polyhedral cone H = H(Q) = {w € R*: Qg -w <0}
represented in terms of a system of inequalities (or intersection of a finite number of half-
spaces or the H-representation of the cone) with lineality zero can be represented as H =

cone (ext(H)), the convex hull of its extremal rays (the V-representation of the cone).!!

"For completeness we recall some basic concepts: Given any finite set of points V C R2, we
denote its conical hull by cone (V) = {3 Nv;: A; >0 and v; € V}; an extremal ray of cone
H C R?is any point w € H, w # 0, such that there exists a vector p € R? where p is a supporting
hyperplane to the cone H, and HN {(/) ERY:p-¢= 0} = \w : A > 0; a vector p defines a supporting
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We now define the set of points that are the candidates to be the extremal rays of the
polyhedral cones H(Q). Define the set of points V = (i,j,%eﬂ {ai, b;, cije, diji,} C R® where,
a; = €4,
by = — (3 —0)e; + de; + bey,
Cijk = — (3 —20) e; —3(1 —6) ej + dey,
dijr = —(3—20)e; —3(1 —6)e; + (46 — 3) ey,

and where e; € R? is the ith unit vector. Associate each element ) € Q to a subset of V

(one-to-one correspondence) as follows:

I ={ay,a2,as}, I1(i) = {bi,aj,ax},
II1(i,4,k) = {bi, cij, ar} I115(k) = {cijk, Cjir, ar}
VA (3,3, k) = {dijk, ciji, bi} IVs (i) = {dijk, dikj, bi}

IVy = {d;ji, dikj, djik, djkiy i, diji } . IVa(k) = {cijk, ¢jik, diji, djir } -
We then have the following characterization of the polyhedral cones H(Q) = {w € R3: Qp-w< 0} .

LEMMA 3: For all Q € Q, H (Q) = cone (Q) and Q is the set of extremal rays of the cone
H (Q) . Moreover, for any @ and Q' in Q with Q' # Q then H (Q)NH (Q') = cone (Q N Q') .

PROOF OF LEMMA 3: We refer to (Q € Q, interchangeably, as a subset of V using the
one-to-one correspondence above. We use the following result in order to obtain the set
of extremal rays of the cone H = {w: Q-w <0} : A vector ¢ € H is an extremal ray of
the cone H if and only if ¢ € H and €;¢0 = 0 and Q;¢ = 0, for ; and ; two linearly
independent row vectors of the matrix (2.

First note that any two v and ¢/ in V are linearly independent. This is true for all
6 € (0,1) because

—B3-98)<—-B8-2)<-31-6)<46-3)<dé<1

for 6 € (0,1) and the definitions of ¥ € V. Now, for all ) € Q the matrix Qg of
the H-representation of the cones H (@) have rank equal to 3 (full rank). Therefore,
lineal (H (Q)) = {¢ € R*: Qg - ¢ =0} = {0} and thus all cones H (Q) have lineality zero.

Finally, one can easily verify, using the result stated in the previous paragraph, that @ is

hyperplane if for all ¢ € H then p- ¢ < 0; the set of all extremal rays of a cone H is denoted ext(H);
the lineality space of a cone H = {(f) ER:Q-¢p= 0} is equal to the linear space lineal (H) =
{d) ER:Q-¢p= 0} , and the lineality of a cone is the dimension of the lineality space.
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the set of extremal rays of the cone H (Q) for all @ € Q. Thus by the representation result
for cones we have that H (Q) = cone (Q) .
We now show that for any @ and @' in Q with Q' # @ then H (Q) N H(Q') =

cone (QNQ")).

CLAIM 1: Suppose that for any two cones H (Q) = cone (Q) and H (Q") = cone (Q'), there
exists a separating hyperplane H such that if v € (QUQ)\(QNQ') then v ¢ H. Then

H(Q)NH(Q) = cone(@NQ').

ProOOF OF CLAIM 1: Recall that any vector p € R? can be associated with the hy-
perplane H, where H = {w : p.w = 0} . A hyperplane H is separating if and only if for all
w€ H(Q) and ' € H(Q') then p.w <0 and p.w’ > 0.

It is obvious that cone (Q N Q") C H (Q)NH (Q’) . We need to prove that cone (Q N Q') D

H(Q)NH(Q'). It is obvious that H (Q) N H (Q') is a cone and that H (Q) N H (Q') C
QU Q'). But the separating hyperplane H is such that H (Q) N H (Q') C H and all
QUQ)H\(QNQ') are such that v ¢ H, and thus v ¢ H (Q) N H (Q'). Therefore,

H(Q') Ccone(QNQ'). Q.E.D. CLAIM 1

We now proceed showing that for each pair Q and @’ in Q with Q' # @ there exists
a separating hyperplane H, associated with a vector p, such that v ¢ @ N Q' implies that
v¢H.

ne(
e (
( )N

1. First, consider the case with Q) = I.

Consider the separating hyperplane associated with p = e;. By Claim 1 it is straightfor-
ward that H (I)NH (I11(i)) = cone (aj,ar), H(I)NH (I11,(i,j,k)) = H(I)NH (I115(k)) =
cone (ag), H(I)NH (IVy (i,5,k)) =H{I)NH V2 (i)) =H ()N HIVy(k)) ={0}. Also,
H (I) N H (1V3) = {0}, because p = e; + e + e, defines a separating hyperplane: p-v > 0
forvelandp-v<0foralvelV.

2. Now consider the case with Q = I1(3).

The intersection H (I1(i))H (I11,(i,j,k)) = cone (b;, ai) , because p = de; + (3 — 6) e;
defines a separating hyperplane: for cone H (I1(i)),p-b; =0,p-ar,=0,p-a; =3—6 >0,
and for cone H (ITI1(i, j, k)), p- cijr = 96 — 6* —9 < 0. Similarly, we have that H (I1(j))N
H (IIL(i,7,k)) = cone (ax), and H (II(k))NH (I11,(3,j,k)) = {0} (separating hyperplane
is p=eg).

The intersection H (I1(3)) N H (1113 (k)) = cone (ax) and H (II(i))NH (I11 (z)) = {0}

because p = e; defines a separating hyperplane.
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The intersection H (I1(i)) N H (IV; (i,j,k)) = cone(b;), because p = de; + (3 —6)e;
defines a separating hyperplane: for the cone H (I1(i)) see the previous paragraph, and for
the cone H (IV1 (i, j, k)) we have that p-b; = 0, p-d;j;, = 96—62—9 < 0, P Cjik = 96—62—9 <
0. Similarly, we also have that H (I1(z)) N H (IV; (j,i,k)) = H (I1(z)) N H (IV (3, k,3)) =
{0}.

The intersection, H (11(i)) N H (IVz (i)) = cone (b;), because p = (36 — 26%) e; + 6%¢; +
(9 + 6% — 96) e defines a separating hyperplane: for cone H (I1(i)) we have p-b; = 0,
praj=06>>0,and p-ay =9+ 6 — 95 >0, and for cone H (IVs (i)) we have p - djjr, = —
3(1—8)(9+62—-96) <0, and p- dig; = —3(1 — 8) (6 — 3)* < 0.

The intersection H (11(i))NH (IV3) = {0} because p = (36 — 26%) e;+6%e;+(9 + 6% — 96) e
defines a separating hyperplane: for cone H (I11(7)) see the previous paragraph, and for cone
H(IV3), p-dije = =3 (1 —8) (9+ 62— 98) < 0, p-digj = —3(1—6) (3—6)* <0, p-dj; = —
3(1—6)(9—6%—36) <0,pdyjs =—3(1—6)(9—6>—66) <0, pdjip =—27(1—6)* <0,
p-dyi; =—9(1-6)(3-06)<0.

Finally, the intersection H (I1(i))NH (IVy (k)) = {0} because p = de;+(3 — 6) e; defines
a separating hyperplane: for cone H (I1(¢)) see the first paragraph of item 2, and for cone
HIVy(k)),p-cije =96—8"—9<0,p-cjix =65 +6 —9<0,p-dij, =96 -8 —9 <0,
and p - dji = 66 + 6% — 9 < 0.

3. Now consider the case with Q = I11(i,7,k).

The intersection H (1111(4, j, k))NH (1113 (k)) = cone (cijk, ar) because p = =9 (1 — §) e;+
(9 — 60) e; defines a separating hyperplane: for cone H (I111(i,j,k)), p-cijr =0, p-ap =0,
and p-b; = —276+27+36% > 0, and for cone H (IT1 (k)), p-cjir = 36 (=6 + 56) < 0. Simi-
larly, we also have that H (I11;(3,j,k))NH (1113 (i)) = H (I111(3,5,k))NH (1112 (j)) = {0} .

The intersection H (I11y(4, j,k))NH (IVi (3, j, k)) = cone (ciji, b;) because p = (36 — 26%) e;+
§%ej + 9+ 62 — 96) ey, defines a separating hyperplane: for cone H (IT1(i,j,k)), p-b; =
0, p-cijp =0, p-ar =9+ 6 —95 > 0 and for cone H (IVi(i,5,k)), p- dijx = —
3(1—16) (94 6*—96) < 0. Similarly, we also have that H (I111(i, j, k)) N H (IV; (i, k, j)) =
cone (b;) and H (IT111(i,7,k)) N H (IV4(j,i,k)) = H (I111(i,73,k)) N H (IV1(4,k,1)) = {0} .

The intersection H (I11(i,j,k)) N H (IV; (i)) = cone (b;) because p = (36 — 262) ei +
526]' + (9 + 6% — 95) er defines a separating hyperplane: see items 2 and 3 above. Similarly,
H(IIL(i,5,k)) N H (IVy(j)) = H(IIL(i,j,k)) N H(IV,a(k)) = {0}. We also have that
H (I1L(i,j,k)) N H (IV3) = {0}, because p = (36 — 26%) e; + 6%; + (9 + 6% — 96) ey, also
defines a separating hyperplane: see items 2 and 3 above.

The intersection H (I111(i,j,k)) " H (IVy (k)) = cone (c;ji) because p = 3 (1 —06)e; +
(26 — 3) e; defines a separating hyperplane: for cone H (I11,(i,j,k)), p-cijr =0, p-ap =0,
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and p-b; = 96— 6> —9 < 0, and for cone H (IV} (k)), p-cjik, = 6 (6 — 56) >0, p-d;j, = 0, and
p-djix = 6 (6 — 56) > 0. Similarly, we have that H (I11(i,7,k))NIVy (j) = H (111, (i, j, k)N
H (1Vy (k)) = {0}.

4. Now consider the case with Q = IT1x(k).

The intersection H (1115 (k))NH (IVi(i, ], k)) = cone (ciji) , because p = (36 — 26%) e;+
626j + (9 + 62 — 96) ey, defines a separating hyperplane: for cone H (I115 (k)), p- cijr =0,
p-cjik =362 (1—8) >0,p-by =9+ 6> —96 >0, and for cone H (IV;(i,,k)), see item 3
above. Similarly, H (III;(j)) N H (IVi(i, 5, k)) = H (III; (i)) 0 H (IV1(3, 5, %)) = {0} .

The intersection H (I11y(k)) N H (IV2(i)) = {0} and H (1113 (k)) N H (IV3) = {0}
because p = (36 — 262) e; + 62ej + (9 + 6% — 96) e defines a separating hyperplane: see
previous the paragraph for cone H (I11; (k)) and item 3 for cones H (IV3 (7)) and H (IV3).

The intersection H (1115 (k)) N H (IVy(k)) = cone (cijk, cjir) because p = de; + de; +
(6 — 50) e), defines a separating hyperplane: for cone H (1113 (k)), p - cijk = p - ¢jir = 0,
p-by, =6—56>0, and for cone H (IVy (k)), p-dijr =p-djir, = =3 (1 —6) (6 — 56) <O.

5. Now consider the case with Q = I'V; (i, ], k).

The intersection H (IVi (i,4,k)) N H (IVa(i)) = cone (b;,dix) because p = §%; +
(126 —26% — 9) ej+(9 + 62 — 95) ey defines a separating hyperplane: for cone H (IV; (i,7,k)),
p-dijk =0, p-cijp = 3(1—-0) (9—}—62—96) > 0, p-b = 0, and for cone H (IV5 (7)),
p-digy =—36(1—-06)(6-0)<0.

The intersection H (IVi (i,7,k)) N H (IV3) = cone(d;;i) because p = (46 —3)e; +
(46 — 3) j+(6 — 50) ey, defines a separating hyperplane: for cone H (IV; (i, j, k)), p-dijr = 0,
pcijk =3(0—1)(56 —6) >0,p-b; =3(6 —1) (6 —3) >0, and for cone H (IV3), p-dix; =
96 (65— 1) < 0, p-diji =185 (6 —1) < 0, p-dyps =986 —1) < 0, p-djsg = 0, p- dpgj =
186 (6 — 1) < 0.

The intersection H (IVi (4, j, k))NH (IVy (k)) = cone (cijk, diji) because p = 3 (1 — ) e;+
(26 — 3) e; defines a separating hyperplane: for cone H (IVi (4,7, k)), p-dijr =0, p-cijr = 0,
p-b; =96—9—6% < 0, and for cone H (IVy (k)), p-cjir = p-djix, = 6 (6 — 56) > 0. Similarly,
H (Vi (5,7, 1)) (0 H (VA ()) = H (IVi (5., k) 0 H (IVa (3)) = {0}

6. Now consider the case with @ = IV3 (7).

The intersection H (IV (i)) N H (IV3) = cone (dijk,dj), because p = (76 —6)e; +
(3 —26)ej + (3 —26) ey, defines a separating hyperplane: for cone H (IV3 (7)), p - diji = 0,
p-digj =0,and p-b; =3 (6 — 1) (6 — 6) > 0, and for cone H (IV3), p-dyj; =185 (6 — 1) <0,
P wrv (i =185 (5 —1) < 0, p-djix =96 (6 — 1) < 0, p-dgsj = 95 (5 — 1) < 0,
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The intersection H (IVa (4))NH (IVy (k)) = cone (d;j;), because p = §%e;+(126 — 26% — 9) e;+

(94 6* — 95) ey, defines a separating hyperplane: for cone H (IV5 (i)) see item 5 above, and
for cone H (IVy (k)), p-cijk = —3 (6 — 1) (9 + 6% — 98) > 0, p-cjur, = 9(6 — 1) (=3 +28) > 0,
p-dij =0, p-djir =36 (6 —1) (6 —3) > 0. Similarly, H (IV> (z)) N H (IV4 (7)) = {0}.

7. Finally, consider the case with @ = I'V3.

The intersection H (IV3) N H (IVy (k)) = cone (d;jk,djir) , because p = (46 — 3)e; +

(46 — 3) ej+ (6 — 50) ey, defines a separating hyperplane: for cone H (IV3) see item 5 above,
and for cone H (IVy (k)), p-cijk =3(6—1)(56 —6) >0, p-cjir = 3 (6 —1) (56 —6) > 0,
p-dijr =0, p-djip, = 0.

We have then proved for all possible pairs @ and Q' in Q with @’ # @ that H (Q) N

H(Q') =cone(QNQ). Q.E.D. LEMMA 3

We now finalize the proof of Theorem 1 showing that if w € H (Q) N H (Q') then

First, note that ®¢g - v = ® (v) where,

® (a;) =0,

P (b;) = —2e; + ej + ey,
P (cijr) = —ei + ek,

® (dijr) = —e; + ex,

for all extremal rays v € () and for all cases Q € Q C V.

Now suppose that there exists @, Q" € Q with @ # @’ such that w € H(Q) N H (Q') =

cone(@NQ'’). By Lemma 3 then w € cone(QNQ’) and thus w = 3~ ooy v where a;, > 0.
But the linearity of ®gp and ®¢ and the fact that &g - v = ® (v) for the extremal points
imply that ¢ -w =3 cong Ww® (V) = Q¢ -w, forallw € H(Q) N H (Q').

Q.E.D. THEOREM 1

Proor or THEOREM 2: We take the limit when 6 — 1 of the expressions for ®g and

Q¢ derived in the proof of Lemma 2 for all possible cases (). Note that since w; — X; — %

the results of cases I and I(7) immediately follows. Also, note that all cases I1I(i,j,k),

I (j,i,k), and II15(k) have the same limit coalitional bargaining value and that case
I11 (k) above is equivalent to H (I111(i,j,k))UH (I1111(j,i,k))UH (I1115(k)). Equivalently,
case II1I (k) , which is associated with the polyhedral cone

H (I11 (k) = {weR3 S w20, wit 2w <0, 2w +w go},
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satisfies H (I11 (k)) = H (I11,(, 4, k)) U H (ITL,(j, 4, k)) U H (IT5(k)) , where
H(IIL(G,j, k) = {w ER:Y w20, wi+2w; <0, w; >0

9

H(IIL(j,ik) = {weR3:Zw20, %; + wj < 0, wiZO}

H(II(k)) = {w€R3:Zw20, w; <0, wj SO}.

We first show that H (I11,(¢,7,k))UH (II1L(j,i,k))UH (II11x(k)) C H (III(k)). Sup-
pose that w € H (I111(i,5,k)) UH (I111(j,3,k)) UH (I112(k)). If w € H (I11,(4,7,k)) then
2w;+4w; <0 and —3w; < 0, which imply 2w; +w; < 0 and thus w € H (I115(k)) (a similar
argument holds for I71;(j,4,k)). Obviously, if w € H (I113(k)) then w € H (I1I(k)). Now
we show that H (111 (k)) C H (I11(i,j,k)) UH (II1(j,i,k)) UH (I1I5(k)) . Suppose that
w € H (III (k)). Then we have either w; < 0 or w; > 0, and either wy < 0 or wy > 0. If
either wj > 0 or wy, > 0 holds then either w belongs either to case I11;(i, j, k) or to case
I111(j,%,k). Otherwise, we must have both w; < 0 and wy < 0, which then imply that w
belongs to case I1Is(k).

Finally, all the different polyhedral cones of type IV collapse into the polyhedral cone
H (IV3): H (IVi(i,5,k)) U H (IVa(i)) U H (IVy(k)) C H (IV3). The unique limit case IV
is simply determined by one linear inequality wi + ws 4+ w3 < 0, which is equivalent to
X1+ Xo+ X3V Q.E.D.

PrROOF OF THEOREM 3: Now take the limit when 6 — 1 of the players’ best response
strategies derived in the proof of Lemma 2 for all possible cases ). Cases I and II(i)
immediately follows.

Consider case I11(k) which by the results of Theorem 2 is equal to I11(k) = H (111, (, 7, k))U
H(IIL(j,i,k)) U H(I1I2(k)). For all w € H(III(k)) the strategies of players ¢ and
j are to make an offer to all players conditional on {i,k} and {j,k}, respectively. If
w € H (III(i,j,k)) then the probability that player k£ choose an offer conditional on {7, k}
is equal to 1, and if w € H (I1I1(i,7,k)) then the probability that player k£ choose an offer
conditional on {i,k} is equal to 1. Also, whenever w € H (III>(k)) then the probability
that player k choose an offer conditional on {7, k} converges to,

O_k(ik):p:hm(96—9)X¢+(9—66)Xj—62v: X;—-%

51 (3X; +3X,; —26V) & X -0+ (X, - %)

and similarly for the probability that player k& choose an offer conditional on {j, k}. Replac-
ing the value of X; as a function of v yields the desired result.

Finally, consider the case where w € H (IV3). From the analysis of case IV3 in the
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proof of Lemma 2 we have that the probability that the offer conditional on {i, 5} is chosen
converges to
1 —8%U +4X,;6 +4X;6 — 5Xp6 + 6X, —3X,; —3X; 1

1
lim = ((1— pi) + (1 — pj)) = lim = =3
fim 5 (= pa) (L= py)) = Jim 5 §(—6U + X; + X; + Xz) 3

Proceeding similarly for the other pairs we conclude the proof. Q.E.D.

PROOF OF PROPOSITION 4: Let ¢ (v) and 7 (v) be respectively the coalitional bar-
gaining value and the nucleolus of v . If v € I then ¢ (v) = n(v). If v € II(12), which
corresponds to Vi > %, 2Vis + Via < V, and 2Vah3 + Vo < V (note that this implies
that Vio > Vig and Vig > Vh3) then ¢ (v) = (Y2 YAV2 V=Va) by Theorem 2. But if
Vig > Voz and v € 11(12) then 2Va3+ Vi < V holds and thus ¢ (v) = n(v), and, by a simi-
lar argument, if V53 > Vi3 then ¢ (v) = n(v). Thusif v € IT then ¢ (v) = n(v). Finally if v
€ I11I(1), which corresponds to 2Vi3+Via > V, Vig+Vi3+Vag <V, and 2Vi2+ Vi3 > V (note
that this also implies that V2 > Vi3 and Via > Va3) then ¢ (v) = (Vmng, V*2V13, V*QVH)
by Theorem 2. Suppose that Vi3 > Va3. Note that the first and second inequalities cor-
respond to (A) 2Viz + Via > V and (B) V — Vig — Vi3 — Vaz > 0, and that adding both
inequalities, (A)+2%(B) > 0, yields V12 +2Va3 < V. Thus if v € ITI(1) and Vi3 > Va3 then
Vie > Vig > Vaz and Vig + 2Vag <V and Vig + 2Vi3 > V which implies that ¢ (v) =7 (v).
A similar argument show that if v € IT1(1) and Va3 > Vi3 then ¢ (v) = n(v). Thus the

coalitional bargaining value coincides with the nucleolus whenever Vis + Vi3 + Voz < V. In

addition, if Vio + Vi3 + Vo3 < V then the game has a non-empty core. Using Schmeidler’s
result that the nucleolus belong to the core, when the core is non-empty, yields that the
coalitional bargaining value belong to the core if Vis 4+ Vig + Vog < V.

If v € IV then we have seen that the coalitional bargaining value coincides with the
Shapley value which is equal to Sh; (v) = & (2(V — Vji) + Vij + Vi) and is distinct from
the nucleolus. Example 2 shows that the CBV may not belong to the core. Q.E.D.

PROOF OF COROLLARY 5: (1) The Shapley value underestimates the equilibrium out-
come of player k, because we have that V < 377 | @; and Shy(v ) = Pp+3 (V -3 <I>l) <
Qi = Py

(2) Player i gets more than the Nash bargaining solution, but less then the Shapley value,
and the opposite happens with players j and k. This is so because both players j and k get
more than the Shapley value, Sh; (v) = ®; + % (V — 2?21 <I>l> < ®; = ¢; and, similarly,
¢1, > Shy (v), which implies that ¢; < Sh; (v) , because 35 Sh; (v) = 31, ¢ = V.Q.E.D.
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