Econ 104: Introduction to Econometrics University of Pennsylvania, Spring 2012

Instructor: Xu Cheng

- E-mail: xucheng@econ.upenn.edu
- Office: 3718 Locust Walk, McNeil Building, Room 527
- Lecture: Tuesday and Thursday 1:30-3:00 PM, College Hall 200
- Office Hours: Monday, 2:30-3:30 PM

Textbooks and Online Material

- Required Textbook: Stock and Watson, *Introductory Econometrics* (2010, 3rd Edition), Addison Wesley, HB 139. S765 2010.
- Course Website: blackboard

Pre-requisites:

• Math 104, Math 114, Econ 101, Econ 103 (or Stat 430 and Stat 431). These courses should be completed before taking Econ 104.

Exams and Problem Sets

- 1. Problem Sets [20%]. Problem sets will be posted on the *blackboard*. Your lowest homework grade will be dropped. Homework late by one day gets 2 points less (one a 0-10 scale). Homework late by more than one day is not accepted.
- 2. First Midterm [30%], in class, Tuesday 2/21, closed books and notes. There will be no make-up exams for the mid-term.
- 3. Final Exam [50%], Monday, May 7th, 9:00-11:00 AM, closed books and notes. The final exam will cover materials taught throughout the course.

Course Description:

This course is designed to introduce students to econometric techniques and their applications in economic analysis and decision making. The main objective of the course is to train the student in (i) handling economic data; (ii) quantitative analysis of economic models with probabilistic tools; (ii) econometric techniques, their application as well as their statistical and practical interpretation; (iv) implementing these techniques on a computer.

Out of Class Collaboration

You are allowed (encouraged) to work together in groups with a maximum of 4 students for the problem sets, but each student must turn in an individual problem set with their own solutions. It is not a violation of this policy to submit essentially the same answer on a problem set as another student, but is a violation of this policy to submit a close to exact copy.

Regrade Requests

The important general rule is that such a request should clearly and succinctly state the unambiguous error you believe has occurred. Requests should occur *within a week of the work being returned*. Errors in grading arising from illegible or garbled answers are not subject to correction. Students who have been graded incorrectly should petition for a correction in writing to the Professor. Students must not approach either instructor or TA with an oral request before making their written request. The entire graded work (problem set or examination) should be resubmitted; there is no guarantee that grades will rise as, statistically, positive and negative errors in grading are equally likely. If the request arises because you think different students have been graded differently, all the affected students should submit their work as a group.

Course Organization -- Econ 104 Introduction to Econometrics, Spring 2012

Lecture Number	Date	Topics		Chapters in Stock and Watson	PS Assigned	PS Due
1	1/12 P	Probability and	Introduction			
2	1/12,N	Statistics	Probability	1, 2.1-2.4	DC1	
2	1/1/,T	(3 Lectures)	Statistics	2.3-2.0	FJI	
3	1/19,N	Lincor	Linear regression model QLC estimator	3.1-3.3, 3.7	000	DC1
4	1/24,1	Lined	Linear regression model, OLS estimator	4.1-4.2	P52	P21
5	1/20,8	Model with one	CIS measure of fit	4.3-4.0		
6	1/31 T	Regressor	Test and CL construction in linear regression model	5 1-5 2	PS3	PS2
7	2/2 R	(4 Lectures)	Regression with hinary regressor	53-5457	133	1.52
	2/2,11	(* 20000.00)	homoskedasticity and heteroskedasticity	5.5 5.4, 5.7		
8	2/7,T	Multiple	Omitted variable bias and multiple regression	6.1-6.2	PS4	PS3
	2/0 D	Regression	Model			
9	2/9,R	(4 Lectures)	multicollinearity, dummy variable, tran	0.5, 0.7		
10	2/14 T		Distribution of OLS estimator in multiple regression	63.66	nractice	PS4
10	2/ 1 1,1		model, test of joint hypothesis. E statistic and its	6.8.7.1.7.2	midterms	131
			large sample distribution. F statistic under	0.0,7.1_,7.1_		
			homoskedasticity			
11	2/16,R		Test of single restriction via transformation,	6.4, 7.3-7.7		
			confidence set for multiple coefficients by inverting			
			F statistic, measure of fit in multiple regression			
	2/21,T	-		Midterm		
12	2/23,R	Nonlinear	Nonlinear regression with polynomials and log	8.1, 8.2		
		Regression	transformation			
13	2/28,T	Model	Interaction between independent variables,	8.3	PS5	
		(3 Lectures)	two discrete variables			
14	3/13,T		Interaction between independent variables,	8.3-8.5	PS6	PS5
			one discrete variable and one continuous variable,			
			two continuous variables			
15	3/15,R	Panel Data	Panel data, fixed effect model,	10.1, 10.2		
		Model	Difference method with 2 time periods			
16	3/20,T	(3 Lectures)	n-1 dummy variables, entity-demeaned regression	10.3		PS6
1/	3/22,R		ime fixed effects, both entity and time fixed	10.4-10./		
	2 /27 T	Describer 11	effects, assumptions for panel data model	12.1	067	
18	3/2/,1	Regression with	IV model and two state least squares estimation	12.1	421	
19	3/29,R	Variables		12.1		007
20	4/3,1	(A Lectures)	Check Wyzlidity, week W	12.2	P58	P57
21	4/5,K	(4 Lectures)	Check IV validity, weak IV	12.3-12.0		DCO
22	4/10,1	Binary	Binary dependent variable, linear probability	11.1-11.2		P28
22	//12 D	Variables	noulinear least squares and maximum likelihood	11 2 11 5		
25	4/12,ñ	(2 Lectures)	estimation and inference of probit and logit	11.3-11.3		
		(= ====================================	models			
24	<u>д/17 т</u>	Time Series	Time series data forecasting serial correlation	14 1-14 2	ρςο	
27	4/19 R	(2 Lectures)	Autocorrelation and Regression	14 3-14 5	135	
26	<u>-, -, , , , , , , , , , , , , , , , , ,</u>		Review	17.5 17.5		ρςο
20	+/ 4, 1	1		1	1	135